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● Understand what “cloud computing” really means
● Understand what “serverless computing” means and when to use it
● Understand the benefits and limitations of each (and versus 

self-hosting), and know when to use one or the other
● Spin up your first cloud computer and ssh into it
● Deploy your first serverless function
● …and do both of those for free ;)
● Know about a few different providers for both cloud and serverless 

computing

Learning Goals
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Most of this lecture will be contextualized in terms of running an application 
or service on a remote machine.

For example:

● Running a server (that you want others to be able to access)
● Running some kind of application that does something for you 

periodically
● Storing or syncing your files
● etc.
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Context: Hosting some service



“The Cloud is just someone else’s computer”
At its most basic: a cloud is a server. Often, it is a cluster of servers.

In popular tech nomenclature, a “cloud” often refers to a conglomerate of 
interconnected services offered by a particular provider, e.g. AWS or Google 
Cloud

● “The AWS cloud”
● “The Google Cloud”
● etc
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What’s a “cloud”?



Why use someone else’s computer?

● They manage the computer for you
○ Usually resistant or reimbursed for 

downtime
○ Always on (as long as you want)
○ Usually don’t have to worry as 

much about outages
● Cost is amortized over time

○ $2000 gaming computer + 
maintenance vs $0.50 per hour

○ Only pay for what you use 
(on-hours)
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Benefits of a “cloud”

Why use someone else’s computer?

● They offer services you don’t have 
access to
○ Hardware encryption modules
○ Enterprise networking setups
○ Serverless functions

● They abstract away complex 
services
○ Caching
○ DNS
○ Kubernetes
○ Databases
○ more…



Why not use someone else’s computer?

● Cost
○ If you’re just doing stuff as a hobby, you may be able to use resources available to you for 

free
■ Old or cheap computers

○ If you’re not careful, you can end up being charged thousands
■ “Forgot to turn off my AWS instance” = $100s+ down the drain 

● Direct access to hardware
○ You have to use the cloud provider’s abstractions

● Very specific setups
○ E.g. if you need something on your local network, or connected to specialized hardware

■ E.g. 3D printers
● Fun?

○ I’ve had a lot of fun running my own servers for free on old hardware
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Detriments/a cautionary tale



Enterprise Clouds can do a lot of specialized stuff!

But in this lecture we’re going to do something powerful, but basic:

● Run our own compute instance i.e. our own special server!

We’ll connect to this server using ssh (“Secure Shell”)
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An “Instance” / “Server”



High level outline:

● “EC2” in AWS
● Launch Instance
● Choose a free-tier compatible instance type (t2.micro) and Ubuntu 

Server
● Add SSH public key for authentication
● Provision (and wait)
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Demo: Launching your first instance



We’ll be running Ubuntu Server (a distribution, or “distro” of Linux).

In order to use it, we’ll have to do some system administration tasks!

● For us, at a basic level: Installing packages

In Ubuntu, we do this using apt, the Advanced Packaging Tool
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Administering Our First Server



High level overview:

● SSH into our new instance
● Install Docker

○ curl -fsSL https://get.docker.com | bash

● Install python3
○ sudo apt install python3
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Demo: Installing Docker & Python



High level overview:

● Use newly-installed Docker to run calculator image I published
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Demo: Running Calculator via Docker



High-level overview:

● Use python3 -m http.server 8080 to start a server as before
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Demo: Running Our Basic Python Server



● AWS (Amazon Web Services)
● GCP (Google Cloud Platform)
● Microsoft Azure
● Oracle Cloud
● DigitalOcean
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Various Cloud Providers



Traditional servers work like this:
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Server vs. Serverless

One single (or a cluster of) 
recognizable, consistent 
servers. Manually configured.

Inside: many different apps 
potentially working in tandem

Potentially uses 
persistent 
computer 
resources (like 
hard drives)



This can end up bloated, or with single points of 
failure.
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Server vs. Serverless

One single (or a cluster of) 
recognizable, consistent 
servers. Manually configured.

Potentially uses 
persistent 
computer 
resources (like 
hard drives)

Inside: many different apps 
potentially working in tandem



Instead, we can imagine decoupling everything.
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A Less Centralized Approach

One single (or a cluster of) 
recognizable, consistent 
servers (backend only)

Inside: only applications 
that need persistent 
storage

^^Literally any computer 
connected to Amazon’s 
network

Functions (not full 
applications!) – parts 
of your app that can 
run independently



● Traditional servers run software.
○ → Usually the software directly interacts with the network (if it talks to the network)
○ → Requires configuration and server administration
○ → Software is always running to respond to events

● Traditional servers run consistently on the same (set of) machine(s)

● Serverless systems run functions.
○ → The functions have a defined language, input, and output.
○ → Functions are only invoked when needed (e.g. on request)
○ → The software needs to be written to take advantage of that system
○ → Aside from that, very little configuration

● Serverless functions are ephemeral
○ → short-lived (max runtime ~10 seconds)
○ → cannot store files/etc

● Serverless functions run anywhere (no consistent machine).
○ There are still servers involved, you just don’t know which ones/the scale is “infinite”
○ Usually charged per invocation
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Servers vs Serverless



Good tasks for serverless

● Serve a static webpage
○ Webpage is built into the code; no persistence required

● Generate a webpage from a user’s cookies
○ Cookies are included with the request, no need to store anything

● Retrieve and serve information from an external database
○ Database is located somewhere else, so no need for persistence
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Servers vs Serverless



Bad tasks for serverless (probably need a server)

● Do something periodically
○ Serverless only runs on request

● Run a database
○ Serverless functions don’t persist data; you’d need a server with persistent 

storage (e.g. a hard drive)

Depends

● Receive user uploads
○ Serverless can receive them, but they would have to be then re-uploaded to 

an external service (e.g. AWS S3)
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Servers vs Serverless



● Often servers + serverless will work together!

Here’s an example from an app I built:

● Use a server to host a database
● Use serverless functions to host a website
● Use serverless functions to provide APIs to request downloading music

○ Adds a download request to the database
● Use a server to download, encode, and upload media (using ffmpeg)
● Use serverless functions to retrieve information from the database, 

(like where the music ended up).
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Serverless <3 Servers



High level overview:

● Introduce Vercel
● Read their documentation about how to create a serverless function
● Write a simple request handler in NodeJS
● Deploy it on Vercel
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Demo: Deploy a serverless function



Built on top of/as a part of cloud platforms:

● AWS Lambda
● GCP Serverless
● Azure Serverless
● DigitalOcean Functions

Their own services (usually designed for website hosting-esque tasks):

● Vercel (runs on AWS Lambda)
● Netlify
● Cloudflare
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Various Serverless Providers


