
Spring 2023

CS45, Lecture 16
Cloud & Serverless

Akshay Srivatsan, Ayelet Drazen, Jonathan Kula

1

● Understand what “cloud computing” really means
● Understand what “serverless computing” means and when to use it
● Understand the benefits and limitations of each (and versus

self-hosting), and know when to use one or the other
● Spin up your first cloud computer and ssh into it
● Deploy your first serverless function
● …and do both of those for free ;)
● Know about a few different providers for both cloud and serverless

computing

Learning Goals

2

Most of this lecture will be contextualized in terms of running an application
or service on a remote machine.

For example:

● Running a server (that you want others to be able to access)
● Running some kind of application that does something for you

periodically
● Storing or syncing your files
● etc.

3

Context: Hosting some service

“The Cloud is just someone else’s computer”
At its most basic: a cloud is a server. Often, it is a cluster of servers.

In popular tech nomenclature, a “cloud” often refers to a conglomerate of
interconnected services offered by a particular provider, e.g. AWS or Google
Cloud

● “The AWS cloud”
● “The Google Cloud”
● etc

4

What’s a “cloud”?

Why use someone else’s computer?

● They manage the computer for you
○ Usually resistant or reimbursed for

downtime
○ Always on (as long as you want)
○ Usually don’t have to worry as

much about outages
● Cost is amortized over time

○ $2000 gaming computer +
maintenance vs $0.50 per hour

○ Only pay for what you use
(on-hours)

5

Benefits of a “cloud”

Why use someone else’s computer?

● They offer services you don’t have
access to
○ Hardware encryption modules
○ Enterprise networking setups
○ Serverless functions

● They abstract away complex
services
○ Caching
○ DNS
○ Kubernetes
○ Databases
○ more…

Why not use someone else’s computer?

● Cost
○ If you’re just doing stuff as a hobby, you may be able to use resources available to you for

free
■ Old or cheap computers

○ If you’re not careful, you can end up being charged thousands
■ “Forgot to turn off my AWS instance” = $100s+ down the drain

● Direct access to hardware
○ You have to use the cloud provider’s abstractions

● Very specific setups
○ E.g. if you need something on your local network, or connected to specialized hardware

■ E.g. 3D printers
● Fun?

○ I’ve had a lot of fun running my own servers for free on old hardware

6

Detriments/a cautionary tale

Enterprise Clouds can do a lot of specialized stuff!

But in this lecture we’re going to do something powerful, but basic:

● Run our own compute instance i.e. our own special server!

We’ll connect to this server using ssh (“Secure Shell”)

7

An “Instance” / “Server”

High level outline:

● “EC2” in AWS
● Launch Instance
● Choose a free-tier compatible instance type (t2.micro) and Ubuntu

Server
● Add SSH public key for authentication
● Provision (and wait)

8

Demo: Launching your first instance

We’ll be running Ubuntu Server (a distribution, or “distro” of Linux).

In order to use it, we’ll have to do some system administration tasks!

● For us, at a basic level: Installing packages

In Ubuntu, we do this using apt, the Advanced Packaging Tool

9

Administering Our First Server

High level overview:

● SSH into our new instance
● Install Docker

○ curl -fsSL https://get.docker.com | bash

● Install python3
○ sudo apt install python3

10

Demo: Installing Docker & Python

High level overview:

● Use newly-installed Docker to run calculator image I published

11

Demo: Running Calculator via Docker

High-level overview:

● Use python3 -m http.server 8080 to start a server as before

12

Demo: Running Our Basic Python Server

● AWS (Amazon Web Services)
● GCP (Google Cloud Platform)
● Microsoft Azure
● Oracle Cloud
● DigitalOcean

13

Various Cloud Providers

Traditional servers work like this:

14

Server vs. Serverless

One single (or a cluster of)
recognizable, consistent
servers. Manually configured.

Inside: many different apps
potentially working in tandem

Potentially uses
persistent
computer
resources (like
hard drives)

This can end up bloated, or with single points of
failure.

15

Server vs. Serverless

One single (or a cluster of)
recognizable, consistent
servers. Manually configured.

Potentially uses
persistent
computer
resources (like
hard drives)

Inside: many different apps
potentially working in tandem

Instead, we can imagine decoupling everything.

16

A Less Centralized Approach

One single (or a cluster of)
recognizable, consistent
servers (backend only)

Inside: only applications
that need persistent
storage

^^Literally any computer
connected to Amazon’s
network

Functions (not full
applications!) – parts
of your app that can
run independently

● Traditional servers run software.
○ → Usually the software directly interacts with the network (if it talks to the network)
○ → Requires configuration and server administration
○ → Software is always running to respond to events

● Traditional servers run consistently on the same (set of) machine(s)

● Serverless systems run functions.
○ → The functions have a defined language, input, and output.
○ → Functions are only invoked when needed (e.g. on request)
○ → The software needs to be written to take advantage of that system
○ → Aside from that, very little configuration

● Serverless functions are ephemeral
○ → short-lived (max runtime ~10 seconds)
○ → cannot store files/etc

● Serverless functions run anywhere (no consistent machine).
○ There are still servers involved, you just don’t know which ones/the scale is “infinite”
○ Usually charged per invocation

17

Servers vs Serverless

Good tasks for serverless

● Serve a static webpage
○ Webpage is built into the code; no persistence required

● Generate a webpage from a user’s cookies
○ Cookies are included with the request, no need to store anything

● Retrieve and serve information from an external database
○ Database is located somewhere else, so no need for persistence

18

Servers vs Serverless

Bad tasks for serverless (probably need a server)

● Do something periodically
○ Serverless only runs on request

● Run a database
○ Serverless functions don’t persist data; you’d need a server with persistent

storage (e.g. a hard drive)

Depends

● Receive user uploads
○ Serverless can receive them, but they would have to be then re-uploaded to

an external service (e.g. AWS S3)

19

Servers vs Serverless

● Often servers + serverless will work together!

Here’s an example from an app I built:

● Use a server to host a database
● Use serverless functions to host a website
● Use serverless functions to provide APIs to request downloading music

○ Adds a download request to the database
● Use a server to download, encode, and upload media (using ffmpeg)
● Use serverless functions to retrieve information from the database,

(like where the music ended up).

20

Serverless <3 Servers

High level overview:

● Introduce Vercel
● Read their documentation about how to create a serverless function
● Write a simple request handler in NodeJS
● Deploy it on Vercel

21

Demo: Deploy a serverless function

Built on top of/as a part of cloud platforms:

● AWS Lambda
● GCP Serverless
● Azure Serverless
● DigitalOcean Functions

Their own services (usually designed for website hosting-esque tasks):

● Vercel (runs on AWS Lambda)
● Netlify
● Cloudflare

22

Various Serverless Providers

