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What is Encoding?

• Computers are great at numbers.

• Computers are terrible at everything else.

• We need to turn everything else into numbers for computers to deal with them.
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Encoding Numbers

Numbers themselves can be encodedmany ways:

roman: XLV

= 50− 10 + 5

binary 1011012 = 1 ∗ 25 + 0 ∗ 24 + 1 ∗ 23 + 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 22

octal: 558 = 5 ∗ 81 + 5

decimal: 45 = 4 ∗ 101 + 5 ∗ 100

hexadecimal: 2d16 = 2 ∗ 161 + 13

For computers, we want a way that works well with digital logic circuits (i.e., using
only 0 or 1).
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Human Representation

Instead of specifying the base every time we write a number, computer scientists
often use different notations as shorthand:

binary 0b101101

octal: 0o55 or 055

decimal: 45

hex: 0x2d
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Binary

Binary looks great for computers (it's just zero or one), but there's a few problems:

• It's unwieldy for humans: 0b1010000001110 vs 5134.

• It's hard to convert to decimal (but easy to convert to hexadecimal or octal).

• There's no “maximum” number, so there's no maximum number of bits to store
“one number”.

• There's no easy way to represent negative numbers (like−011000012).

• It can't represent non-integer numbers (e.g., what's 012
102
?)

8



Binary

Binary looks great for computers (it's just zero or one), but there's a few problems:

• It's unwieldy for humans: 0b1010000001110 vs 5134.

• It's hard to convert to decimal (but easy to convert to hexadecimal or octal).

• There's no “maximum” number, so there's no maximum number of bits to store
“one number”.

• There's no easy way to represent negative numbers (like−011000012).

• It can't represent non-integer numbers (e.g., what's 012
102
?)

8



Binary

Binary looks great for computers (it's just zero or one), but there's a few problems:

• It's unwieldy for humans: 0b1010000001110 vs 5134.

• It's hard to convert to decimal (but easy to convert to hexadecimal or octal).

• There's no “maximum” number, so there's no maximum number of bits to store
“one number”.

• There's no easy way to represent negative numbers (like−011000012).

• It can't represent non-integer numbers (e.g., what's 012
102
?)

8



Binary

Binary looks great for computers (it's just zero or one), but there's a few problems:

• It's unwieldy for humans: 0b1010000001110 vs 5134.

• It's hard to convert to decimal (but easy to convert to hexadecimal or octal).

• There's no “maximum” number, so there's no maximum number of bits to store
“one number”.

• There's no easy way to represent negative numbers (like−011000012).

• It can't represent non-integer numbers (e.g., what's 012
102
?)

8



Binary

Binary looks great for computers (it's just zero or one), but there's a few problems:

• It's unwieldy for humans: 0b1010000001110 vs 5134.

• It's hard to convert to decimal (but easy to convert to hexadecimal or octal).

• There's no “maximum” number, so there's no maximum number of bits to store
“one number”.

• There's no easy way to represent negative numbers (like−011000012).

• It can't represent non-integer numbers (e.g., what's 012
102
?)

8



Sized Integers

The size problem is solved by defining different “sizes” of numbers, with different
numbers of bits:

nibble 4 bits

byte 8 bits

short 16 bits

int 32 bits

long 64 bits

Different CPUs have different “default” sizes; this size is often called “word”. For
example, 64-bit machines (most computers today) have 64-bit words and 32-bit
“halfwords”.

9



Sized Integers

The size problem is solved by defining different “sizes” of numbers, with different
numbers of bits:

nibble 4 bits

byte 8 bits

short 16 bits

int 32 bits

long 64 bits

Different CPUs have different “default” sizes; this size is often called “word”. For
example, 64-bit machines (most computers today) have 64-bit words and 32-bit
“halfwords”.

9



Signed Integers

The negative numbers problem is solved by using Two's Complement encoding,
wherein a negative number is produced by:

1. Starting with the positive version of that number.

2. Inverting every bit (0 to 1, 1 to 0).

3. Add 1 to the number.

This means 31 (as a byte) becomes 0b00011111, but -31 becomes 0b11100001. The
uppermost bit can be thought of as a “sign bit”.

To interpret a number, you need to know if it is signed or unsigned; 0b11100001
could be -31 or 225.
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Integer Ranges

The range of numbers we can represent depends on the encoding we use:

Width Unsigned Signed
8 [0, 255] [−128, 127]
16 [0, 65535] [−32768, 32767]
32 [0, 4294967295] [−2147483648, 2147483647]
64 [0, 264 − 1] [−263, 263 − 1]
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Overflow and Underflow

Overflow/Underflow
A huge number of real-world bugs come from integer overflow and underflow.

// unsigned byte overflow:
(uint8_t)(255 + 1 == 0);
// unsigned byte underflow:
(uint8_t)(0 - 1 == 255);
// signed byte overflow):
(int8_t)(127 + 1 == -128);
// signed byte underflow:
(int8_t)(-128 - 1 == 127);
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Endianness

When a single number is represented by multiple bytes, there are two valid ways to
order those bytes: with the “big end” first or the “little end” first.

0xAABBCCDD =
Offset Big Endian Little Endian
0 0xAA 0xDD
1 0xBB 0xCC
2 0xCC 0xBB
3 0xDD 0xAA

Most CPUs are little-endian, but most network protocols are big-endian. The way
we write numbers (e.g., 0xAABBCCDD) is big-endian.
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Floating Point

Real numbers (i.e., non-integers) are represented using “floating-point” arithmetic.

A number like 1701.47 could be written as 170147× 10−2.

The IEEE 754 Standard specifies how computers would store 170147 and−2 so they
can domath easily.

Floating point numbers are inherently approximations, and prone to inaccuracies:

0.1 + 0.2 == 0.3 // false
0.1 + 0.2 // 0.30000000000000004

Sometimes 32-bit floating point numbers are called float and 64-bit floating point
numbers are called double.
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Text

Let's say we want to save this file:

Hi!

One idea might be to do a simple substitution: A=1, B=2, C=3, etc. Problems:

• We need to handle both upper- and lower-case letters.

• We need to handle punctuation.

• We need to handle numbers.

• We need to handle special things like “space” and “enter”/“return”.
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ASCII

In the 1960s, Bell Labs created the American Standard Code for Information
Interchange, which deals with all this:

Hi!

becomes

48 69 21

This is a 7-bit encoding (each letter/symbol takes 7 bits of data), but is often treated
as an 8-bit encoding for convenience.

This encoding became super popular and is used everywhere.
18



ASCII Table
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ASCII outside America

• ASCII (also called ISO 646-US) is unabashedly America-centric.

• It only supports the “basic latin alphabet” (the 26 letters in English).
• Some other countries created slight modifications of ASCII for their use:

• ISO 646-GB adds £ (UK English).

• ISO 646-FR adds à, ç, é, ù, and è (French).

• ISO 646-ES adds ñ, Ñ, ¡, ¿, and ç (Spanish).

• In some cases, people used the extra top bit to encode up to 256 extra
characters in an 8-bit encoding, e.g., Code Page 1252.
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Code Page 1252

• Code Page 1252 was historically the default text encoding onWindows.

• The subset ISO 8859-1 is also considered equivalent in most cases.

• These are the most widespread single-byte (8-bit) text encodings in the world
today, but still only feature on 1.7% of websites.
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Code Page 1252 Table
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Alternatives to ASCII

Countries which use other alphabets came upwith their own ASCII/ISO 646 variants.

These generally encode all the ASCII characters for compatibility, but take
advantage of the 8th bit to encode their own characters (or, often, a subset thereof).
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JIS X 0201 (ISO 646-JP)

This was superseded by Shift JIS, which uses 2 bytes (16 bits).
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Custom Encodings

Some companies also came up with custom encodings for their products.

Generally these would only be usable on devices made by that company, so they
tried to remain backwards-compatible with ASCII.

Over time, there grew to be thousands of incompatible character sets.
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Custom Characters

In 1997, J-Phone (a Japanese phone company) released this character set:
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Standards

Source: xkcd 927 29

https://xkcd.com/927/


Encoding Chaos

Mixing up encodings is problematic:
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Unification

• In 1988, three engineers—Joe Becker, Lee Collins, and Mark Davis—proposed a
unifying encoding that would supersede all the existing character sets.

• They wanted an encoding that was:
• universal (to every language)

• uniform (fixed-width), and

• unique (no ambiguity)

• They called this encoding Unicode.

• In 1991, the Unicode Consortiumwas founded to develop this encoding further.

• In 1992, the Unicode 1.0 was released.
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Representing every Character

• Unicode defines hundreds of thousands of characters.

• Eventually, Unicode wants to encode every character used for human writing.

• Each character is assigned a code point, a number uniquely identifying it.

• Related characters (e.g., letters in the same alphabet) are grouped together
into “code planes”.

• To uniquely represent all of these characters using a fixed-width encoding,
each character would need a lot of bits… but this would be inefficient.
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UTF-16 and UTF-32

• Unicode used to have fewer than 216 = 65356 characters in it (i.e., it had a
single “plane”).

• At that point, it made sense to use a fixed 16-bit representation for each code
point.

• This representation is called the 16-bit Unicode Transformation Format, or
UTF-16.

• After Unicode 3.0, there were far too many code points to fit in 16 bits.

• The logical next step, UTF-32, was considered wasteful (every code point would
then take 4 bytes).
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Ken Thompson Saves the Day: UTF-8

• Ken Thompson (the UNIX guy) and Rob Pike developed a new variable-length
encoding for Unicode called UTF-8.

• Under this encoding, more frequently used symbols (like the Latin alphabet) get
represented by shorter sequences, while less frequently used ones (like
hieroglyphics) get longer sequences.

• Each character is now represented by both a code point and a UTF-8 byte
sequence.

• This encoding is the most popular encoding today, and used on all major
operating systems.
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Line Endings

• Since UTF-8 is backwards-compatible with ASCII, it inherits an issue from
ASCII: line endings.

• ASCII was originally designed to be compatible with typewriters.

• On typewriters “carriage return” (0x0D) moves the paper to the right, while “line
feed” (0x0A) moves the paper up.

• MS-DOS (and later Windows) preserved this exactly: a newline was 0x0D 0x0A.

• Unix decided to save a byte: a newline was just 0x0A.

• This distinction exists to this day; some people standardized on “DOS line
endings” (the web, email, etc.) and some on “UNIX line endings” (git, compilers,
etc.).
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Audio

• Just like text, there are many ways to encode audio.

• At the most basic level, audio is an array of “loudness” over time.

• Each array element corresponds to some amount of time, determined by the
sample rate. A common sample rate for audio is 44100 samples per second
(44.1 kHz).

• Each array element has a certain size, corresponding to its accuracy. Eight-bit
audio sounds worse than 16-bit audio.

• Asmost humans have two ears, we tend to prefer stereo audio, where there
are left and right channels; each channel is a separate array.

• When these arrays are stored raw, they're called Pulse-code modulation files
(or PCM) files. It's common to store these in files with a .wav file extension.
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Audio Codecs

• PCM data takes up a lot of space, and audio is usually predictable, so there are a
lot of encoders/decoders (codecs) to store audio more efficiently:

• MPEG-1 Audio Layer III (MP3)

• Free Lossless Audio Codec (FLAC)

• Advanced Audio Coding (AAC)

• Opus

• Some of these codecs are lossy, meaning they discard some data they
consider unnecessary from the original audio.

• Some of these codecs are lossless, meaning they can be reversed 100%
accurately to the original audio.
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Audio Containers

• While a codec determines how raw audio data is represented as numbers, a
container format determines how that encoded audio is saved on disk.

• While some containers and codecs are often found together, it's generally
possible to mix-and-match a codec and a container format.

• The container stores information like song titles and artist names.

• The container may include multiple channels of audio.
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Image Formats

• Images are slightly simpler than audio, since each container format generally
contains a specific codec.

• There are two kinds of images: raster and vector.
• Raster images are essentially a grid of pixels, each of which has a specific
color.
• Photographs

• Vector images are a set of instructions to draw an image.
• Drawings, Logos, Diagrams

• Vector images can be rendered at any size on-demand, while raster images
have a fixed size.
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Raster Formats

Common raster image formats include:

• Joint Photographic Experts Group (JPEG)

• Graphics Interchange Format (GIF)

• Portable Network Graphics (PNG)
• High Efficiency Image File Format (HEIF/AVIF)

• High Efficiency Video Coding (HEVC)

• AOMedia Video 1 (AV1)

• Tagged Image File Format (TIFF)

• Windows Bitmap (BMP)

Once again, there is a lossy vs. lossless distinction. 42



Lossy Compression

Source: xkcd 1683

43

https://xkcd.com/1683/


Data Quality

Source: xkcd 2739

44
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Vector Formats

Common vector image formats include:

• Scalable Vector Graphics (SVG)

• Gerber (for printed circuit board designs)

Vector formats are also common for 3D objects due to their relatively small size:

• Wavefront OBJ

• Blender

• various Autodesk formats
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Raw Images

• High-end cameras can “shoot in raw”, which captures the raw pixel data
coming from the image sensor.

• These images contain ridiculous amounts of data, most of which isn't useful.

• Photographers need to “develop” RAW images into a final image.
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Color Spaces

• While light forms a continuous spectrum of colors, humans can usually only see
the intensities of three wavelengths.

• These wavelengths roughly correspond to red, green, and blue, so we can try to
parametrize a color by howmuch red, green, and blue (RGB) need to be mixed
to make it.

• The exact way human brains reconstruct colors from these three wavelengths
is complicated, so there are various color spaces which attempt to
approximate it.

• There are other ways to parametrize colors; for example, hue, saturation, and
value/brightness (HSV).

47



Color Spaces

• While light forms a continuous spectrum of colors, humans can usually only see
the intensities of three wavelengths.

• These wavelengths roughly correspond to red, green, and blue, so we can try to
parametrize a color by howmuch red, green, and blue (RGB) need to be mixed
to make it.

• The exact way human brains reconstruct colors from these three wavelengths
is complicated, so there are various color spaces which attempt to
approximate it.

• There are other ways to parametrize colors; for example, hue, saturation, and
value/brightness (HSV).

47



Color Spaces

• While light forms a continuous spectrum of colors, humans can usually only see
the intensities of three wavelengths.

• These wavelengths roughly correspond to red, green, and blue, so we can try to
parametrize a color by howmuch red, green, and blue (RGB) need to be mixed
to make it.

• The exact way human brains reconstruct colors from these three wavelengths
is complicated, so there are various color spaces which attempt to
approximate it.

• There are other ways to parametrize colors; for example, hue, saturation, and
value/brightness (HSV).

47



Color Spaces

• While light forms a continuous spectrum of colors, humans can usually only see
the intensities of three wavelengths.

• These wavelengths roughly correspond to red, green, and blue, so we can try to
parametrize a color by howmuch red, green, and blue (RGB) need to be mixed
to make it.

• The exact way human brains reconstruct colors from these three wavelengths
is complicated, so there are various color spaces which attempt to
approximate it.

• There are other ways to parametrize colors; for example, hue, saturation, and
value/brightness (HSV).

47



Even More Options

• As if different color spaces weren't bad enough, there are different
representations of each color space.

• RGB (red, green, blue) is pretty common, but sometimes BGR (blue, green, red)
or other permutations are also used.

• Sometimes you'll see RGBA or ARGB (“A” stands for “alpha”, which is
transparency).

• RGB888 uses 8 bits per color (24 bits total), RGB565 uses 5 or 6 per color (16 bits
total), RGB332 uses 2 or 3 (8 total).

• 24-bit color is called “true color”, 16-bit color is called “high color”, and anything
higher than 24 is called “deep color”.
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High Dynamic Range

• Human eyes have a very high “dynamic range”; they can resolve detail even
when some parts of an image are very bright and some are very dark.

• Cameras don't have this, so they fake it by taking photos with different
exposure settings andmerging them together.

• Only some codecs support HDR, including HEIC and AVIF.
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Resolution

The “size” of an image in pixels is called its resolution.

Common resolutions include:

HD 1280×780

Full HD 1280×1080

Full HD 1920×1080

4K Ultra HD 3840×2160

8K Ultra HD 7680×4320

Square power-of-two resolutions are also common (e.g., 16×16, 32×32,
2048×2048), especially for logos.
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Video Codecs

Like audio, there are several different video codecs in use:

• High Efficiency Video Coding (H.265)

• Advanced Video Coding (H.264)

• VP8 and VP9

• Theora

Uncompressed video is almost entirely useless outside of professional use, since
the files are ridiculously large. Video is compressed using lossy algorithms.
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Video Containers

There are also several container formats:

• Matroska (MKV)

• MPEG-4 (MP4)

• QuickTime (MOV)

• Audio Video Interleave (AVI)

• WebM

• Ogg

Video containers also double as audio containers, since most videos have
associated audio.
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Frame Rate

In addition to all the parameters from both images and audio, video also has an
additional parameter: the frame rate.

The frame rate of a video controls howmany images are shown per second.

High frame rates look smoother but require more data.

Typical frame rates are 24, 30, and 60 frames per second.
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Reencoding Video

• In order to do almost any operation to a video, it needs to be reencoded.

• Reencoding a video is slow; usually it's about 1:1 with the length of the video.

• Reencoding a 90-minute lecture video takes about 90minutes onmy laptop.

• Reencoding also effectively recompresses a video, losing information every
time if the encoding is lossy.
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Useful media tools

file: identifies the format ofmany files

iconv: converts between text encodings

FFmpeg: converting (or identifying) audio and video

ImageMagick: editing images

Pandoc: converts documents between formats
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Review

• There are lots of ways to encode any given piece ofmedia.

• The appropriate encoding for a specific purpose depends on a lot of factors.

• Different people/software/systemsmay expect different encodings, and run
into problems when given data in the wrong encoding.

• It's important to keep encoding in mind when working with media, and
generally not mix together things with different encodings.
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