
CS45, Lecture 3: Data Wrangling

Akshay Srivatsan, Ayelet Drazen, Jonathan Kula

Winter 2023

Contents

1 Lecture Overview 1

2 What is Data Wrangling? 2

3 Data Formats 2

4 grep and sed 3

5 Regular Expressions 4
5.1 RegEx Example: Email Matching 5
5.2 Extracting usernames . 6
5.3 RegEx Applications . 7

6 Useful Commands 8
6.1 sort and uniq . 8

6.2 head and tail . 8
6.3 xargs . 8

7 Other Tools 9

1 Lecture Overview

In Lecture 2, we learned about the shell and how to run basic commands in the
shell such as ls , cd , cat , man , and wc . We also learned about how to use the
| operator to chain commands together. Finally we learned how to redirect
output using < and > , and to append output to the end of a file using >> .
In today’s lecture we will learn how to combine these commands in powerful
ways in order to automate tasks effectively, specifically in the context of data
manipulation and analysis.

1

2 What is Data Wrangling?

Have you ever had large amounts of data and needed to look for a specific set of
information? Of course you have. Have you ever done so in a tedious, inefficient
way, even though you knew there is a better way of doing so? Bets are you
have. In this lecture, we learn about how to manipulate data to suit our needs
in the most efficient way possible.

The basic idea of data wrangling is that you take some data and convert or
transform it into another form that is more useful. Often times, this ”other”
form is a condensed or sorted subset of the original data.

With the increased reliance on large amounts of data (i.e. ”big data”), data
wrangling has become increasingly important for effectively analysis.

3 Data Formats

Before we discuss data wrangling itself, it’s worth discussing different data for-
mats. The data wrangling technique you choose to use will heavily depend on
the file format you are using to store your data. Here are some common file
formats that are used to store data and that we will discuss in this class:

• CSV

• XML

• HTML

• JSON

• TXT

A CSV file is a comma-separated values file where information is separated by
commas. CSV files are plain text files which make them easy to generate. They
allow data to be saved in a tabular format (meaning in a table, with rows and
columns). CSV files are useful as they can be opened with different applications
and are not application specific. CSV files are most often used to analyze data
with spreadsheets.

A XML file is an Extensible Markup Language (XML) file that is used to store
data in hierarchical format. XML files were created for storing documents in a
way that both humans and machines could read. A XML file consists of tags
that define a hierarchy within the document.

A HTML file is a Hypertext Markup Language file that is used to store data
in hierarchical format, specifically for a webpage. HTML files are very similar
to XML files in that they are both read by both humans and machines and they
both contain tags to define a hierarchy within the document. The key difference
between XML and HTML files is that HTML files use a predefined set of tags
while XML files do not have any constraints on what tags can be used.

2

A JSON file is a JavaScript Object Notation file that stores structured data in
the form of JavaScript objects. JSON files are often used for transmitting data
in web applications.

A TXT file is a plaintext file that contains data in the form of lines. TXT files
have no special formatting (bold, italic, etc.).

4 grep and sed

Now onto data wrangling! We’ve already seen a basic example of data wran-
gling with the | operator. Recall that the pipe operator is used to transfer
the output of one command to become the input of another command. Con-
sider the command ls /Documents | grep -i transcript . This command lists all
of the files in my Documents folder and searches for files that mention tran-
script (case insensitive). In this case, we start with a command to produce the
data (ls /Documents) and then we use a second command to wrangle the data
(grep -i transcript) by searching for files that contain the word transcript. You
will find that the | command is often used for data wrangling in this way.

One common use case for data wrangling with the | operator is when looking
at logs. System logs keep a record of operating system events on a machine.
As you can imagine, system logs record a lot of information. It is infeasible to
read through an entire system log, which makes it a perfect candidate for data
wrangling.

In order to display a system’s log, you can use the log show command for macOS,
or the journalctl command for Linux. Once we have our log, we can use the
grep command in order to search for log entries of interest. You might consider
running log show | grep -i Chrome in order to show all log entries related to
Chrome. Logs produce a lot of data so we may want to limit the amount of
data we are interested in. Let’s limit the amount of data to log entries just from
the past 24 hours using log show --last 1d . Now we can search for all entries
mentioning Chrome in the past 24 hours.

We can even use this model to search for entries on a remote server. We’ll
talk more about ssh in a later lecture, but for now, we just need to know
that we can use ssh to log into a remote machine. I will use ssh to log into
a ”honeypot” server that the CS45 staff set up. A ”honeypot” is a server or
machine that attempts to lure potential attackers by inviting those attackers to
log on or access said machine or server. We can search for everything related
to ssh on our honeypot server: ssh adrazen@192.9.152.85 journalctl | grep sshd .
Note that we are using a pipe to stream a remote file (i.e. our remote file is the
system log on the honeypot server) through grep on our local computer.

This is still a lot of content. Let’s imagine we are interested in just looking at
when a user was disconnected from our honeypot server. In that case we might
want to search for the phrase ”Disconnected from”. In this case, we could use

3

something like this:
ssh adrazen@192.9.152.85 journalctl | grep sshd | grep "Disconnected from"

This will work but we can do better. Given we are using a remote machine, we
will be sending the data from the log back to our local machine in order to run
grep sshd and grep "Disconnected from" .

Instead, we should try to run the entire data wrangling pipeline on our remote
machine in order to avoid having to send data across. We can do this by adding
quotes:
ssh adrazen@192.9.152.85 'journalctl | grep sshd | grep "Disconnected from"'

This is still fairly noisy. Perhaps we are are just interested in knowing who
was disconnected. We can use another tool here called sed to parse out the
usernames of users who were disconnected from the honeypot server.

sed is a stream editor built into Unix. sed can be used for searching a file
(similar to grep), deleting lines from a file, adding lines to a file, and substi-
tuting text in a file. We will be using sed for substitution, known as the s

command.

The s command in sed uses the following pattern s/REGEX/SUBSTITUTION where
REGEX represents a regular expression for the phrase we are looking to matched,
and SUBSTITUTION represents what we want to change the matched phrase to. In
our case, we are looking to take out some noise from our log entries so we can
use the following sed command to remove redundant information about which
machine the error came from:
sed 's/.*Disconnected from // '

We can now add this to our data wrangling pipeline as follows:
ssh adrazen@myth.stanford.edu journalctl | grep sshd | grep "Disconnected from"

| sed 's/.*Disconnected from //'

If we are interested in removing noise from only the first few log entries, we can
specify a range of lines in our sed command. Perhaps we are only interested in
removing noise from the first 10 log entries: sed '1,10 s/.*Disconnected from //'

This is good, but it isn’t good enough. We are interested in only the usernames
of users who signed in to our machine. We will need to write a regular expression
to match everything in the line except the username.

5 Regular Expressions

A regular expression is a series of characters that specifies a search pattern.
Most ASCII characters carry their normal meaning but some characters have
special matching behavior. There is some variation between different implemen-
tations of regular expressions, but here are some general patterns. First, let’s
look at groups of characters, which specify which characters we are interested
in:

4

• . means any one single character (except the newline character)

• [abc] means any of the characters included inside the square brackets,
which in this case would be a , b , or c

• [a-z] means any characters in the range a through z

• (a|b) means either a or b

Next, let’s look at quantifiers, which specify how many characters we are inter-
ested in:

• * specifies that 0 or more of the proceeding characters match

• + specifies that 1 or more of the proceeding characters match

• {X} specifies that exactly X characters should match

Finally, we can use anchors to specify what we expect at the beginning or end
of a multi-component pattern:

• ^ specifies the start of the line

• $ specifies the end of the line

Getting used to regular expressions can be very tricky so we recommend using
a RegEx cheat sheet as well as a RegEx tester.

5.1 RegEx Example: Email Matching

Let’s take a look at an example of using a regular expression to match email
addresses. (The regex I will be presenting here does not actually match all email
addresses but it will 99% of them.)

Let’s take my email (adrazen@stanford.edu) and try to write a regular expres-
sion to match it. The easiest approach to writing a regular expression is to
find delimiters to help divide the text you are looking to match into manage-
able chunks. In the case of my email address, we can choose @ and . as our
delimiters.

Let’s first focus on writing a regular expression for everything that comes before
the @ sign. In other words, let’s write a regular expression to match the text
adrazen . We can begin by thinking about which characters are allowed. We
know that this first part of an email address can consist of characters A through
Z (both upper and lower case), any digit 0 through 9 as well as . , , % , + ,
and - . Thus, the allowed character set is [A-Za-z0-9. %+-] . Next, we will want
to think about how many of these characters are allowed.

Given that the username portion of the email address can be as long as you
want (more or less), we will say that we can use as many of these characters as
you want as long as you have at least one. (Technically, the username portion

5

https://cheatography.com/davechild/cheat-sheets/regular-expressions/
https://regex101.com/

of the email address should be 64 characters or less.) Altogether, this gives us
the following for the first portion of the email address: [A-Za-z0-9. %+-]+ .

Next we will consider the portion of the email address that is between the @

symbol and the . . This refers to the email domain name and is allowed to
consist of any of the following characters: characters A through Z (both upper
and lower case), any digit 0 through 9 as well as . , and - . The allowed
character set is therefore [A-Za-z0-9.-] .

Again, the domain name is allowed to be more or less as long as we want, but at
least 1 character long. (Technically, the username portion of the email address
should be 255 characters or less.) The regex to match this portion of the email
address is: [A-Za-z0-9.-]+ .

Finally, we have the component after the . . This is known as the top-level
domain (TLD). According to rules for the TLD, it must be at least 2 characters
long and is allowed to consist of any alphabetic characters. Thus, the regex to
match this portion of the email address is [A-Za-z] .

Finally, we can combine these individual regexes together and we get the fol-
lowing: [A-Za-z0-9. %+-]+@[A-Za-z0-9.-]+_[A-Za-z]{2,} .

5.2 Extracting usernames

Now that we have a basic understanding of how regexes work, let’s return to
our initial example of trying to extract the usernames from our log file on the
honeypot server. The lines in our log file look something like this:

1 Jan 13 20:58:45 honeypot sshd [70942]: Disconnected from

authenticating user root 52.142.11.171 port 1024 [preauth]

2 Jan 13 20:59:25 honeypot sshd [70946]: Disconnected from invalid

user dachuang 158.101.97.210 port 48426 [preauth]

3 Jan 13 20:59:44 honeypot sshd [70949]: Disconnected from

authenticating user root 143.110.153.150 port 42314 [preauth]

4 Jan 13 21:00:24 honeypot sshd [70951]: Disconnected from

authenticating user root 5.78.40.253 port 56548 [preauth]

5 Jan 13 21:00:46 honeypot sshd [70953]: Disconnected from invalid

user weiwei 170.64.134.218 port 38632 [preauth]

6 Jan 13 21:00:53 honeypot sshd [70955]: Disconnected from invalid

user web_proj 143.110.153.150 port 36600 [preauth]

7 Jan 13 21:01:04 honeypot sshd [70958]: Disconnected from

authenticating user root 92.27.157.252 port 33673 [preauth]

8 Jan 13 21:01:29 honeypot sshd [70963]: Disconnected from invalid

user klaus 52.142.11.171 port 1024 [preauth]

9 Jan 13 21:01:39 honeypot sshd [70965]: Disconnected from

authenticating user games 5.78.40.253 port 38640 [preauth]

10 Jan 13 21:01:59 honeypot sshd [70967]: Disconnected from

authenticating user root 143.110.153.150 port 59124 [preauth]

11 Jan 13 21:02:22 honeypot sshd [70969]: Disconnected from

authenticating user root 92.27.157.252 port 45223 [preauth]

12 Jan 13 21:02:45 honeypot sshd [70971]: Disconnected from invalid

user es 5.78.40.253 port 54572 [preauth]

13 Jan 13 21:02:46 honeypot sshd [70973]: Disconnected from

authenticating user root 170.64.134.218 port 38602 [preauth]

6

Our goal is to extract the usernames from this data. To do this, we will first write
a regular expression to match the entire line. We will then work on extracting
the username from that regular expression.

Let’s divide each line into three components. First, we have the component be-
fore the username (e.g. Jan 13 21:02:46 honeypot sshd[70973]: Disconnected from

authenticating user). Then, we have the username itself (e.g. root). Finally, we
have everything after the username (e.g. 5.78.40.253 port 54572 [preauth]). For
the first component, we can write the regular expression as follows: .* Disconnected

from (authenticating |invalid)?user . For the username, we will assume that the
username can consist of any characters. Thus, we will use the following pattern
to match the username .* . Finally, for the component after the username, we
will use the following expression:
[0-9.]+ port [0-9]+ (preauth)?

Now that we have matched the entire line, we want to extract out the username.
In order to extract the username, we first need to identify where in our RegEx
our username is located. If we look at our RegEx, we will find that portion in the
middle with .* is used to match our username. We can now use a capture group
to, well, capture the username and then use it later. Generally speaking, in a
regular expression, a capture group is any grouping inside of parentheses which
allows us to remember a value in order to reuse it later. In fact, our regular
expression already consists of two capture groups: (authenticating |invalid)

as well as (preauth) . We will now create another capture group by adding
parentheses around the matching for a username: (.*) . Now, we can refer back
to this part of the text. Given this is the second capture group, we will use \2
to refer to this capture group.

We can no use this in order to build up our sed command. Given we want
to only extract the username, we will match the entire line and then in the
substitution portion, we will simply replace with just the username.

1 ssh adrazen@192 .9.152.85 journalctl

2 | grep sshd

3 | grep "Disconnected from"

4 | sed -E ’s/.* Disconnected from (invalid |authenticating)?user

(.*) \[0 -9.\]+ port [0 -9]+(\[preauth \])?$/\2/’

5.3 RegEx Applications

Regular expressions are especially useful given they can be embedded inside
of other tools. We’ve already seen how a regex expression can be used for
substitution in sed . Regular expressions can also be used inside of applications
such as Excel and Google Sheets that support data processing.

7

6 Useful Commands

6.1 sort and uniq

Now that we have extracted just the usernames, we can run some analysis on
our data. There are a number of useful commands that will help us run this
analysis. We can use the sort command to sort the usernames alphabetically.
(More generally, sort is a command that can be used for sorting alphabetically
or numerically).

We can also use uniq to find unique usernames within our data. If we call
uniq with the -c flag, then we can get the number of occurrences for each
username. uniq -c will collapse consecutive lines that are the same into a single
line, prefixed with a count of the number of occurrences.

If we want to find which usernames appear most often, we can call sort again
after we have collapsed usernames with their counts. This time, we will call
sort with the -n flag in order to get a numeric sorting. Our final pipeline will
look as follows:

1 ssh adrazen@192 .9.152.85 journalctl

2 | grep sshd

3 | grep "Disconnected from"

4 | sed -E ’s/.* Disconnected from (invalid |authenticating)?user

(.*) \[0 -9.\]+ port [0 -9]+(\[preauth \])?$/\2/’
5 | sort

6 | uniq -c

7 | sort -n

6.2 head and tail

If we want to get the usernames of the ten users that were disconnected most
often from our honeypot, then we can use the tail command with the -n10

flag. The tail command prints the last X lines of a file. Given that the file is
sorted with ascending counts, we will use the tail command.

If we want to get the usernames of the ten users that were disconnected least
often from our honeypot, then we can use the head command with the -n10

flag. The head command prints the first X lines of a file.

6.3 xargs

The final useful command that is worth knowing about is xargs . xargs is a
command that allows you to use the output of one command as the arguments
to another command. Note that this is different from using the output of one
command as the input to another command.

To understand how to use xargs , we can look at an example. Imagine we have a
file named filenames.txt which contains a bunch of file names. If we run cat on
filenames.txt , we can see the contents of filenames.txt in the Terminal.

8

1 adrazen@ayelet -computer ~ % cat file_names.txt

2 homework.txt

3 program.py

4 todo -list.txt

5 random.txt

Now let’s imagine that we want to create a new file for each filename in filenames.txt .
One way to do this would be to run cat filenames.txt and to manually create
new files using the touch command. This would work, but would be horribly
inefficient.

Let’s see how we might use the xargs command to streamline this process. Re-
member that xargs takes the output from a first command and passes them as
the arguments to the second command. In our case, the output of cat filenames.txt

is the names of the files we are interested in creating using touch . Using xargs ,
we can pass these file names from the output of cat to be the arguments to
touch :
cat filenames.txt | xargs touch

7 Other Tools

This lecture covers just a subset of the tools that you may want to use for data
wrangling and analysis. Here are a few other tools that you may be interested
in using:

awk is a scripting language for manipulating data and generating reports.

R is another programming language that is great at data analysis and plot-
ting.

perl is a programming language for text manipulation

9

	Lecture Overview
	What is Data Wrangling?
	Data Formats
	[on line, boxrule=0pt, boxsep=0pt, top=2pt, left=2pt, bottom=2pt, right=2pt, colback=gray!15, colframe=white, fontupper=,options@for=inlinecodetitle]grep and [on line, boxrule=0pt, boxsep=0pt, top=2pt, left=2pt, bottom=2pt, right=2pt, colback=gray!15, colframe=white, fontupper=,options@for=inlinecodetitle]sed
	Regular Expressions
	RegEx Example: Email Matching
	Extracting usernames
	RegEx Applications

	Useful Commands
	[on line, boxrule=0pt, boxsep=0pt, top=2pt, left=2pt, bottom=2pt, right=2pt, colback=gray!15, colframe=white, fontupper=,options@for=inlinecodetitle]sort and [on line, boxrule=0pt, boxsep=0pt, top=2pt, left=2pt, bottom=2pt, right=2pt, colback=gray!15, colframe=white, fontupper=,options@for=inlinecodetitle]uniq
	[on line, boxrule=0pt, boxsep=0pt, top=2pt, left=2pt, bottom=2pt, right=2pt, colback=gray!15, colframe=white, fontupper=,options@for=inlinecodetitle]head and [on line, boxrule=0pt, boxsep=0pt, top=2pt, left=2pt, bottom=2pt, right=2pt, colback=gray!15, colframe=white, fontupper=,options@for=inlinecodetitle]tail
	[on line, boxrule=0pt, boxsep=0pt, top=2pt, left=2pt, bottom=2pt, right=2pt, colback=gray!15, colframe=white, fontupper=,options@for=inlinecodetitle]xargs

	Other Tools

