
CS 45, Lecture 6

Command Line Environment

Spring 2023

Akshay Srivatsan, Ayelet Drazen, Jonathan Kula

1

Outline

1. Review

2. The Environment

3. Shell Configuration

4. Multitasking

2

Announcements

• Assignment 1 is due today. Reach out if you don't think you will be able to get it
done in time.

• Assignment 2 is out! It's due a week from today onWednesday, April 26th at
11:59 PM.

3

Outline

1. Review

2. The Environment

3. Shell Configuration

4. Multitasking

4

Recap

In the previous lecture, we saw:

• How to edit files in the terminal

• How to enter/exit a full screen program (vim)

In this lecture, we will see:

• How to configure and customize your shell

• How to multitask in the terminal

• How to runmultiple programs side-by-side

5

Recap

In the previous lecture, we saw:

• How to edit files in the terminal

• How to enter/exit a full screen program (vim)

In this lecture, we will see:

• How to configure and customize your shell

• How to multitask in the terminal

• How to runmultiple programs side-by-side

5

Recap

In the previous lecture, we saw:

• How to edit files in the terminal

• How to enter/exit a full screen program (vim)

In this lecture, we will see:

• How to configure and customize your shell

• How to multitask in the terminal

• How to runmultiple programs side-by-side

5

Recap

In the previous lecture, we saw:

• How to edit files in the terminal

• How to enter/exit a full screen program (vim)

In this lecture, we will see:

• How to configure and customize your shell

• How to multitask in the terminal

• How to runmultiple programs side-by-side

5

Recap

In the previous lecture, we saw:

• How to edit files in the terminal

• How to enter/exit a full screen program (vim)

In this lecture, we will see:

• How to configure and customize your shell

• How to multitask in the terminal

• How to runmultiple programs side-by-side

5

Terminal vs. Shell vs. Command Line

Definition (terminal)
The terminal is the window you open. Think of it like a web browser.

Definition (shell)
The shell is the program you use to launch other programs. Think of it like Google.

Definition (cli)
A command line interface (CLI) is a generic term for a text-based program
which runs within a terminal. Think of this like “the web”. A CLI program or a
TUI program is like a website.

6

https://google.com

Terminal vs. Shell vs. Command Line

Definition (terminal)
The terminal is the window you open. Think of it like a web browser.

Definition (shell)
The shell is the program you use to launch other programs. Think of it like Google.

Definition (cli)
A command line interface (CLI) is a generic term for a text-based program
which runs within a terminal. Think of this like “the web”. A CLI program or a
TUI program is like a website.

6

https://google.com

Terminal vs. Shell vs. Command Line

Definition (terminal)
The terminal is the window you open. Think of it like a web browser.

Definition (shell)
The shell is the program you use to launch other programs. Think of it like Google.

Definition (cli)
A command line interface (CLI) is a generic term for a text-based program
which runs within a terminal. Think of this like “the web”. A CLI program or a
TUI program is like a website.

6

https://google.com

Outline

1. Review

2. The Environment

2.1 Configuration

2.2 Permissions

2.3 Shortcuts

3. Shell Configuration

4. Multitasking 7

Contents of the Environment

The “environment” a program runs in includes several things:

• The user who's running it

• The files on the filesystem

• Environment variables (configuration variables)

• stdin and stdout (and stderr)

8

Contents of the Environment

The “environment” a program runs in includes several things:

• The user who's running it

• The files on the filesystem

• Environment variables (configuration variables)

• stdin and stdout (and stderr)

8

Contents of the Environment

The “environment” a program runs in includes several things:

• The user who's running it

• The files on the filesystem

• Environment variables (configuration variables)

• stdin and stdout (and stderr)

8

Contents of the Environment

The “environment” a program runs in includes several things:

• The user who's running it

• The files on the filesystem

• Environment variables (configuration variables)

• stdin and stdout (and stderr)

8

Contents of the Environment

The “environment” a program runs in includes several things:

• The user who's running it

• The files on the filesystem

• Environment variables (configuration variables)

• stdin and stdout (and stderr)

8

Outline

1. Review

2. The Environment

2.1 Configuration

2.2 Permissions

2.3 Shortcuts

3. Shell Configuration

4. Multitasking 9

Input/Output

We already saw this in Lecture 2, but we can control the default input and output
files of a program using redirection, i.e., the <, >, >>, and | operators.

By default, input comes from the terminal (/dev/tty* or /dev/pts/*); you can see
the name of the “controlling terminal” of a program by running tty.

Input and output can be redirected, but a program is bound to a specific window.
When that window is closed, the programwill exit.

10

Input/Output

We already saw this in Lecture 2, but we can control the default input and output
files of a program using redirection, i.e., the <, >, >>, and | operators.

By default, input comes from the terminal (/dev/tty* or /dev/pts/*); you can see
the name of the “controlling terminal” of a program by running tty.

Input and output can be redirected, but a program is bound to a specific window.
When that window is closed, the programwill exit.

10

Input/Output

We already saw this in Lecture 2, but we can control the default input and output
files of a program using redirection, i.e., the <, >, >>, and | operators.

By default, input comes from the terminal (/dev/tty* or /dev/pts/*); you can see
the name of the “controlling terminal” of a program by running tty.

Input and output can be redirected, but a program is bound to a specific window.
When that window is closed, the programwill exit.

10

Environment Variables

Environment variables are a way to configure a program's default behavior.

We've already seen shell scripting variables, environment variables are basically the
same thing except they're “exported” so other programs can use them.

For example, the $PATH variable determines where programs can be located. If a
program isn't found “on your $PATH”, you'll get a “command not found” error.

Other common variables:

$TERM: Which terminal you're using.

$USER: Your username

$EDITOR: Which editor you prefer

$PWD: Your current directory

11

Environment Variables

Environment variables are a way to configure a program's default behavior.

We've already seen shell scripting variables, environment variables are basically the
same thing except they're “exported” so other programs can use them.

For example, the $PATH variable determines where programs can be located. If a
program isn't found “on your $PATH”, you'll get a “command not found” error.

Other common variables:

$TERM: Which terminal you're using.

$USER: Your username

$EDITOR: Which editor you prefer

$PWD: Your current directory

11

Environment Variables

Environment variables are a way to configure a program's default behavior.

We've already seen shell scripting variables, environment variables are basically the
same thing except they're “exported” so other programs can use them.

For example, the $PATH variable determines where programs can be located. If a
program isn't found “on your $PATH”, you'll get a “command not found” error.

Other common variables:

$TERM: Which terminal you're using.

$USER: Your username

$EDITOR: Which editor you prefer

$PWD: Your current directory

11

Environment Variables

Environment variables are a way to configure a program's default behavior.

We've already seen shell scripting variables, environment variables are basically the
same thing except they're “exported” so other programs can use them.

For example, the $PATH variable determines where programs can be located. If a
program isn't found “on your $PATH”, you'll get a “command not found” error.

Other common variables:

$TERM: Which terminal you're using.

$USER: Your username

$EDITOR: Which editor you prefer

$PWD: Your current directory 11

PATH

My $PATH looks like this:

/home/akshay/.local/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:
/var/lib/flatpak/exports/bin:/usr/bin/site_perl:
/usr/bin/vendor_perl:/usr/bin/core_perl

This is a list of directories, where each directory is separated by colons (:).

When you run a program like grep, the shell looks in each directory on your $PATH
from left to right.

12

Setting Environment Variables

You can “export” a shell variable to turn it into an environment variable as follows:

export MYVAR="hi"
python -c 'import os; print(os.getenv("MYVAR"))'

You can temporarily set an environment variable as follows:

MYVAR=hi python -c 'import os; print(os.getenv("MYVAR"))'

Environment variables are “inherited”—child programs (and their descendants) will
be able to see their value, but not any other programs.

13

Setting Environment Variables

You can “export” a shell variable to turn it into an environment variable as follows:

export MYVAR="hi"
python -c 'import os; print(os.getenv("MYVAR"))'

You can temporarily set an environment variable as follows:

MYVAR=hi python -c 'import os; print(os.getenv("MYVAR"))'

Environment variables are “inherited”—child programs (and their descendants) will
be able to see their value, but not any other programs.

13

Outline

1. Review

2. The Environment

2.1 Configuration

2.2 Permissions

2.3 Shortcuts

3. Shell Configuration

4. Multitasking 14

Users and Groups

We also talked about this a bit in Lecture 2, but every command you run runs as a
specific user.

The variable $USER conventionally holds your username (although this isn't
guaranteed); you can also run whoami to see who is logged in.

Every user may belong to one or more “groups”, which you can see by running
groups.

For example, I'm in the groups:

% groups
docker uucp audio wheel akshay

15

Users and Groups

We also talked about this a bit in Lecture 2, but every command you run runs as a
specific user.

The variable $USER conventionally holds your username (although this isn't
guaranteed); you can also run whoami to see who is logged in.

Every user may belong to one or more “groups”, which you can see by running
groups.

For example, I'm in the groups:

% groups
docker uucp audio wheel akshay

15

Users and Groups

We also talked about this a bit in Lecture 2, but every command you run runs as a
specific user.

The variable $USER conventionally holds your username (although this isn't
guaranteed); you can also run whoami to see who is logged in.

Every user may belong to one or more “groups”, which you can see by running
groups.

For example, I'm in the groups:

% groups
docker uucp audio wheel akshay

15

Permissions

On UNIX, you must have the appropriate “permissions” to do certain actions.

Source: xkcd 838

16

https://xkcd.com/838/

Permissions

On UNIX, you must have the appropriate “permissions” to do certain actions.

Source: xkcd 838
16

https://xkcd.com/838/

File Permissions

Every file has an “owner” and a “group”.

Every file has three sets of permissions: owner permissions, group permissions,
and everyone else permissions.

rmeans “permission to read”, wmeans “permission to write”, and xmeans
“permission to execute (i.e., run)”.

You can see file permissions by running ls -l.

17

File Permissions

Every file has an “owner” and a “group”.

Every file has three sets of permissions: owner permissions, group permissions,
and everyone else permissions.

rmeans “permission to read”, wmeans “permission to write”, and xmeans
“permission to execute (i.e., run)”.

You can see file permissions by running ls -l.

17

File Permissions

Every file has an “owner” and a “group”.

Every file has three sets of permissions: owner permissions, group permissions,
and everyone else permissions.

rmeans “permission to read”, wmeans “permission to write”, and xmeans
“permission to execute (i.e., run)”.

You can see file permissions by running ls -l.

17

File Permissions

Every file has an “owner” and a “group”.

Every file has three sets of permissions: owner permissions, group permissions,
and everyone else permissions.

rmeans “permission to read”, wmeans “permission to write”, and xmeans
“permission to execute (i.e., run)”.

You can see file permissions by running ls -l.

17

File Permissions Example

Output of ls

-rwxr-xr-x 1 root root 153736 Sep 4 07:33 grep

These are the permissions onmy /usr/bin/grep binary, as given by ls -l.

18

File Permissions Example

Owner

-rwxr-xr-x 1 root root 153736 Sep 4 07:33 grep

The owner (root) can read, write, and execute /usr/bin/grep.

19

File Permissions Example

Group

-rwxr-xr-x 1 root root 153736 Sep 4 07:33 grep

Themembers of the group “root” can read and execute /usr/bin/grep, but not
write to it.

20

File Permissions Example

Everyone

-rwxr-xr-x 1 root root 153736 Sep 4 07:33 grep

Everyone else can read and execute /usr/bin/grep, but notwrite to it.

21

Changing Permissions

Owner

We can change the owner or group of a file using the chown and chgrp commands.

Example (chown)
Changing the owner of a file hello.txt to the user akshay:

chown akshay hello.txt

22

Changing Permissions

Group

We can change the owner or group of a file using the chown and chgrp commands.

Example (chgrp)
Changing the group of a file hello.txt to the group staff:

chgrp staff hello.txt

23

Changing Permissions

We can change the permissions on a file using the chmod command (change file
mode).

We've already seen this!

By default, chmod changes the permissions for everyone at once. You can also
specifically change one of the three sets of permissions:

chmod u+x my_script.sh
chmod g+rw group_plan.txt
chmod o-r my_secret.txt
chmod 777 open_permissions.txt

24

Changing Permissions

We can change the permissions on a file using the chmod command (change file
mode).

We've already seen this!

Example (chmod +x)
Make a shell script executable:

chmod +x my_script.sh

By default, chmod changes the permissions for everyone at once. You can also
specifically change one of the three sets of permissions:

chmod u+x my_script.sh
chmod g+rw group_plan.txt
chmod o-r my_secret.txt
chmod 777 open_permissions.txt

24

Changing Permissions

We can change the permissions on a file using the chmod command (change file
mode).

We've already seen this!

Example (chmod -w)
Make a file read-only.

chmod -w my_safe_file.txt

By default, chmod changes the permissions for everyone at once. You can also
specifically change one of the three sets of permissions:

chmod u+x my_script.sh
chmod g+rw group_plan.txt
chmod o-r my_secret.txt
chmod 777 open_permissions.txt

24

Changing Permissions

We can change the permissions on a file using the chmod command (change file
mode).

We've already seen this!

Example (chmod -r)
Make a file non-readable:

chmod -r my_secret.txt

By default, chmod changes the permissions for everyone at once. You can also
specifically change one of the three sets of permissions:

chmod u+x my_script.sh
chmod g+rw group_plan.txt
chmod o-r my_secret.txt
chmod 777 open_permissions.txt

24

Changing Permissions

We can change the permissions on a file using the chmod command (change file
mode).

We've already seen this!

By default, chmod changes the permissions for everyone at once. You can also
specifically change one of the three sets of permissions:

chmod u+x my_script.sh
chmod g+rw group_plan.txt
chmod o-r my_secret.txt
chmod 777 open_permissions.txt

24

Types of File

There are a few types of files, with different properties. You can tell them apart by
the first character in the output of ls -l.

lrwxrwxrwx 1 root root 21 Oct 8 16:05 os-release ->
../usr/lib/os-release↪→

drwxr-xr-x 1 root root 18 Oct 8 16:15 ostree
-rw-r--r-- 1 root root 79 Nov 29 02:14

ostree-mkinitcpio.conf↪→

This is frommy /etc directory, which is where programs store their configuration
files.

25

Types of File

- A regular file.

b A block device (like a hard disk).

c A character device (like a serial port).

d A directory.

l A symbolic link.

n A network file.

p A “named pipe”.

s A “named socket”.

26

Outline

1. Review

2. The Environment

2.1 Configuration

2.2 Permissions

2.3 Shortcuts

3. Shell Configuration

4. Multitasking 27

Symbolic Links

Definition (symlink)
A symbolic link (or “symlink”) is a shortcut to a file or directory.

You can create one with the ln -s command, as follows:

ln -s $target $link_name

When you try to read from a symlink, you actually read from the file it's pointing to.
The readlink command tells you where a symlink points.

Permissions are shared between a symlink and the target file. Trying to change the
permissions on the link will change the permissions on the file itself.

28

Symbolic Links

Definition (symlink)
A symbolic link (or “symlink”) is a shortcut to a file or directory.

You can create one with the ln -s command, as follows:

ln -s $target $link_name

When you try to read from a symlink, you actually read from the file it's pointing to.
The readlink command tells you where a symlink points.

Permissions are shared between a symlink and the target file. Trying to change the
permissions on the link will change the permissions on the file itself.

28

Symbolic Links

Definition (symlink)
A symbolic link (or “symlink”) is a shortcut to a file or directory.

You can create one with the ln -s command, as follows:

ln -s $target $link_name

When you try to read from a symlink, you actually read from the file it's pointing to.
The readlink command tells you where a symlink points.

Permissions are shared between a symlink and the target file. Trying to change the
permissions on the link will change the permissions on the file itself.

28

Symbolic Links

Definition (symlink)
A symbolic link (or “symlink”) is a shortcut to a file or directory.

You can create one with the ln -s command, as follows:

ln -s $target $link_name

When you try to read from a symlink, you actually read from the file it's pointing to.
The readlink command tells you where a symlink points.

Permissions are shared between a symlink and the target file. Trying to change the
permissions on the link will change the permissions on the file itself.

28

Aliases

Definition (alias)
A alias is like a shortcut for a specific command.

You can create one with the alias command, as follows:

alias hi="echo 'hello'"

Running an alias will run the command it points to. You can see what an alias
named “hi” does by running alias hi.

29

Aliases

Definition (alias)
A alias is like a shortcut for a specific command.

You can create one with the alias command, as follows:

alias hi="echo 'hello'"

Running an alias will run the command it points to. You can see what an alias
named “hi” does by running alias hi.

29

Aliases

Definition (alias)
A alias is like a shortcut for a specific command.

You can create one with the alias command, as follows:

alias hi="echo 'hello'"

Running an alias will run the command it points to. You can see what an alias
named “hi” does by running alias hi.

29

Aside: Searching for Files

The find tool is a powerful way to search for files.

30

Aside: Searching for Files

The find tool is a powerful way to search for files.

Example (find -name)
Find all files named “hello”:

find . -name "hello"

30

Aside: Searching for Files

The find tool is a powerful way to search for files.

Example (find -executable)
Find all files marked “executable”:

find . -executable

Example (find -type)
Find all regular files, directories, and links:

find . -type f,d,l

30

Aside: Searching for Files

The find tool is a powerful way to search for files.

Example (find -type)
Find all regular files, directories, and links:

find . -type f,d,l

30

Aside: Searching for Files

The find tool is a powerful way to search for files.

Example (find)
Find all regular files (but not links) which are marked executable and named ”hello”.

find . -type f -name "hello" -executable

30

Outline

1. Review

2. The Environment

3. Shell Configuration

4. Multitasking

31

Configuring your Shell

If you're using bash, your shell configuration file is called ~/.bashrc. If you're using
zsh, it's called ~/.zshrc.

This file is a shell script that's run every time your shell starts. You can use it to
define aliases and environment variables.

For example, my .bashrc includes the lines:

alias ls='ls --color=auto'
PS1='[\u@\h \W]\$ '
export EDITOR=vim
export PATH=$PATH:~/bin

32

Outline

1. Review

2. The Environment

3. Shell Configuration

4. Multitasking

4.1 Job Control

4.2 Multiplexing

33

Outline

1. Review

2. The Environment

3. Shell Configuration

4. Multitasking

4.1 Job Control

4.2 Multiplexing

34

Jobs

Definition (job)
A job is a task you’re doing in the terminal, usually corresponding to a program that
you’re running. You can have one foreground job and many background
jobs running at the same time. You can also have many suspended jobs which
are frozen (i.e., not running).

Whenever we run a program from the shell, we're starting a new foreground job.
Jobs are tied to their “controlling terminal”, and will exit when the terminal window
is closed.

35

Jobs

Definition (job)
A job is a task you’re doing in the terminal, usually corresponding to a program that
you’re running. You can have one foreground job and many background
jobs running at the same time. You can also have many suspended jobs which
are frozen (i.e., not running).

Whenever we run a program from the shell, we're starting a new foreground job.
Jobs are tied to their “controlling terminal”, and will exit when the terminal window
is closed.

35

Suspending Jobs

You can “suspend” a job (put it to sleep) by pressing control-z on your keyboard.
Try it from vim!

You can see all the jobs in your current terminal and their statuses by running jobs.

36

Suspending Jobs

You can “suspend” a job (put it to sleep) by pressing control-z on your keyboard.
Try it from vim!

You can see all the jobs in your current terminal and their statuses by running jobs.

36

Background Jobs

You can “background” a suspended job (wake it up, but hide it) by running bg.

If you try to background a program like vim, it'll immediately suspend itself again
because it needs to be connected to a terminal. However, if you have a
long-running command like a download, you can background it without any issues.

If you have multiple jobs suspended, bgwill run the most recent one. You can
specify a different one using the job number from jobs:

bg %1

37

Background Jobs

You can “background” a suspended job (wake it up, but hide it) by running bg.

If you try to background a program like vim, it'll immediately suspend itself again
because it needs to be connected to a terminal. However, if you have a
long-running command like a download, you can background it without any issues.

If you have multiple jobs suspended, bgwill run the most recent one. You can
specify a different one using the job number from jobs:

bg %1

37

Background Jobs

You can also run a new job in the background by adding an ampersand (&) to the end
of the command:

sleep 5 &

You can also do this to a set of commands:

(sleep 5 && printf "\a") &

38

Background Jobs

You can also run a new job in the background by adding an ampersand (&) to the end
of the command:

sleep 5 &

You can also do this to a set of commands:

(sleep 5 && printf "\a") &

38

Foregrounding Jobs

You can “foreground” a suspended or background job (wake it up and let it take over
the terminal) by running fg.

If you have multiple suspended or background jobs, fgwill run the most recent one.
You can specify a different one using the job number from jobs:

fg %1

39

Foregrounding Jobs

You can “foreground” a suspended or background job (wake it up and let it take over
the terminal) by running fg.

If you have multiple suspended or background jobs, fgwill run the most recent one.
You can specify a different one using the job number from jobs:

fg %1

39

Quitting Jobs

Usually, you can “kill” a foreground job (quit it) by pressing control-c on your
keyboard.

You can “kill” a suspended or background job (wake it up and let it take over the
terminal) by running kill. You must specify a job number from jobs:

kill %1

Note that it may take some time for the program to exit, and this may not work on
certain programs like vim.

40

Quitting Jobs

Usually, you can “kill” a foreground job (quit it) by pressing control-c on your
keyboard.

You can “kill” a suspended or background job (wake it up and let it take over the
terminal) by running kill. You must specify a job number from jobs:

kill %1

Note that it may take some time for the program to exit, and this may not work on
certain programs like vim.

40

Quitting Jobs

Usually, you can “kill” a foreground job (quit it) by pressing control-c on your
keyboard.

You can “kill” a suspended or background job (wake it up and let it take over the
terminal) by running kill. You must specify a job number from jobs:

kill %1

Note that it may take some time for the program to exit, and this may not work on
certain programs like vim.

40

Force-quitting Jobs

The kill command works by sending the process (program) the SIGTERM signal
(which politely asks it to exit).

Some processes (programs) may ignore SIGTERM. In this case, you can use SIGKILL
to force-quit it.

kill -s KILL %1

Or, equivalently:

kill -9 %1

41

Force-quitting Jobs

The kill command works by sending the process (program) the SIGTERM signal
(which politely asks it to exit).

Some processes (programs) may ignore SIGTERM. In this case, you can use SIGKILL
to force-quit it.

kill -s KILL %1

Or, equivalently:

kill -9 %1

41

Outline

1. Review

2. The Environment

3. Shell Configuration

4. Multitasking

4.1 Job Control

4.2 Multiplexing

42

Splitting the Terminal

Sometimes we want to have multiple terminal programs open at the same time. In
other words, we want to “split” our terminal window.

Job control will only let us open one program in the foreground at a time.

Unfortunately, there is no built-in way to have multiple programs open at the same
time.

Fortunately, the shell is almost 60 years old, and other people have solved this
problem for us.

43

Splitting the Terminal

Sometimes we want to have multiple terminal programs open at the same time. In
other words, we want to “split” our terminal window.

Job control will only let us open one program in the foreground at a time.

Unfortunately, there is no built-in way to have multiple programs open at the same
time.

Fortunately, the shell is almost 60 years old, and other people have solved this
problem for us.

43

Splitting the Terminal

Sometimes we want to have multiple terminal programs open at the same time. In
other words, we want to “split” our terminal window.

Job control will only let us open one program in the foreground at a time.

Unfortunately, there is no built-in way to have multiple programs open at the same
time.

Fortunately, the shell is almost 60 years old, and other people have solved this
problem for us.

43

Splitting the Terminal

Sometimes we want to have multiple terminal programs open at the same time. In
other words, we want to “split” our terminal window.

Job control will only let us open one program in the foreground at a time.

Unfortunately, there is no built-in way to have multiple programs open at the same
time.

Fortunately, the shell is almost 60 years old, and other people have solved this
problem for us.

43

Terminal Multiplexers

A terminal multiplexer is a programwhich splits one “real” terminal (i.e., one
window) into many “virtual” terminals.

There are a few terminal multiplexers around:

• screen is old but installed onmost computers

• tmux is new but needs to be installed manually

For this class, we'll be talking about tmux!

44

Terminal Multiplexers

A terminal multiplexer is a programwhich splits one “real” terminal (i.e., one
window) into many “virtual” terminals.

There are a few terminal multiplexers around:

• screen is old but installed onmost computers

• tmux is new but needs to be installed manually

For this class, we'll be talking about tmux!

44

Terminal Multiplexers

A terminal multiplexer is a programwhich splits one “real” terminal (i.e., one
window) into many “virtual” terminals.

There are a few terminal multiplexers around:

• screen is old but installed onmost computers

• tmux is new but needs to be installed manually

For this class, we'll be talking about tmux!

44

Terminal Multiplexers

A terminal multiplexer is a programwhich splits one “real” terminal (i.e., one
window) into many “virtual” terminals.

There are a few terminal multiplexers around:

• screen is old but installed onmost computers

• tmux is new but needs to be installed manually

For this class, we'll be talking about tmux!

44

Terminal Multiplexers

A terminal multiplexer is a programwhich splits one “real” terminal (i.e., one
window) into many “virtual” terminals.

There are a few terminal multiplexers around:

• screen is old but installed onmost computers

• tmux is new but needs to be installed manually

For this class, we'll be talking about tmux!

44

Prefix Keys

We need some way to “talk” to tmux to give it commands.

But we also want to talk to the program running inside tmux so we can use it!

tmux solves this problem using a prefix key; any time you want to talk to tmux, you
start by pressing control-b.

If you want to send a control-b to a program inside tmux, press control-b twice
in a row.

45

Prefix Keys

We need some way to “talk” to tmux to give it commands.

But we also want to talk to the program running inside tmux so we can use it!

tmux solves this problem using a prefix key; any time you want to talk to tmux, you
start by pressing control-b.

If you want to send a control-b to a program inside tmux, press control-b twice
in a row.

45

Prefix Keys

We need some way to “talk” to tmux to give it commands.

But we also want to talk to the program running inside tmux so we can use it!

tmux solves this problem using a prefix key; any time you want to talk to tmux, you
start by pressing control-b.

If you want to send a control-b to a program inside tmux, press control-b twice
in a row.

45

Prefix Keys

We need some way to “talk” to tmux to give it commands.

But we also want to talk to the program running inside tmux so we can use it!

tmux solves this problem using a prefix key; any time you want to talk to tmux, you
start by pressing control-b.

If you want to send a control-b to a program inside tmux, press control-b twice
in a row.

45

Using tmux

If you run tmux, you're given a shell prompt with a status bar at the bottom.

There's a bunch of keyboard shortcuts to do various things in tmux. Remember to
press control-b before using any of them!

Splitting the screen (vertically): %

Splitting the screen (horizontally): "

Going to the next “pane”: o

Going to a specific pane: q <number>

Close the current pane x

Check out https://tmuxcheatsheet.com/ or https://quickref.me/tmux for
more! 46

https://tmuxcheatsheet.com/
https://quickref.me/tmux

Advanced tmux

tmux has another use; you can “detach” from your virtual terminal and reattach to it
from another terminal window.

To detach: control-b d

To attach: tmux attach

47

Why tmux?

Where tmux really shines is when used with ssh.

• You only need to enter your ssh password once.

• If your Wi-Fi drops and you lose your ssh connection, your programs keep
running.

• You can detach a tmux session containing a long-running job and come back to
check on it later.

48

	Review
	The Environment
	Configuration
	Permissions
	Shortcuts

	Shell Configuration
	Multitasking
	Job Control
	Multiplexing

