
CS 45, Lecture 7

Compilers

Spring 2023

Akshay Srivatsan, Ayelet Drazen, Jonathan Kula

1

Learning Goals

In this lecture, we will see:

• How UNIX and C were designed together

• How C compilers work

• How packagemanagers work

• How Python has taken over UNIX scripting

2

Outline

1. The C Language

2. Compilation

3. Package Management

4. Python

3

Outline

1. The C Language

2. Compilation

3. Package Management

4. Python

4

C

• C is a general-purpose programming language from the 1970s.

• C is used everywhere, and has inspired:
• Every major operating system

• Every mainstream programming language

• Even if you never write C, you indirectly use it every day.

5

C

• C is a general-purpose programming language from the 1970s.
• C is used everywhere, and has inspired:

• Every major operating system

• Every mainstream programming language

• Even if you never write C, you indirectly use it every day.

5

C

• C is a general-purpose programming language from the 1970s.
• C is used everywhere, and has inspired:

• Every major operating system

• Every mainstream programming language

• Even if you never write C, you indirectly use it every day.

5

Before C

• Nowadays, C is considered a weird, old (and sometimes scary!) language.

• The languages before C were even worse.

This is the “hello, world!” program in B (the language before C):

main() {
extern a, b, c;
putchar(a); putchar(b); putchar(c); putchar('!*n');

}

a 'hell';
b 'o, w';
c 'orld';

6

Before C

• Nowadays, C is considered a weird, old (and sometimes scary!) language.

• The languages before C were even worse.

This is the “hello, world!” program in B (the language before C):

main() {
extern a, b, c;
putchar(a); putchar(b); putchar(c); putchar('!*n');

}

a 'hell';
b 'o, w';
c 'orld';

6

Before C

• Nowadays, C is considered a weird, old (and sometimes scary!) language.

• The languages before C were even worse.

This is the “hello, world!” program in B (the language before C):

main() {
extern a, b, c;
putchar(a); putchar(b); putchar(c); putchar('!*n');

}

a 'hell';
b 'o, w';
c 'orld';

6

Early C

• C was designed in the 1970s by Dennis Ritchie, one of the authors of UNIX.

• It was officially published in the 1978 book The C Programming Language by
Brian Kernighan and Dennis Ritchie, commonly called “K&R C”.

Here's the “hello, world” program in K&R C:

main() {
printf("hello, world");

}

The C programming language was used to implement most of UNIX's kernel and
userspace.

7

Early C

• C was designed in the 1970s by Dennis Ritchie, one of the authors of UNIX.

• It was officially published in the 1978 book The C Programming Language by
Brian Kernighan and Dennis Ritchie, commonly called “K&R C”.

Here's the “hello, world” program in K&R C:

main() {
printf("hello, world");

}

The C programming language was used to implement most of UNIX's kernel and
userspace.

7

Early C

• C was designed in the 1970s by Dennis Ritchie, one of the authors of UNIX.

• It was officially published in the 1978 book The C Programming Language by
Brian Kernighan and Dennis Ritchie, commonly called “K&R C”.

Here's the “hello, world” program in K&R C:

main() {
printf("hello, world");

}

The C programming language was used to implement most of UNIX's kernel and
userspace.

7

Early C

• C was designed in the 1970s by Dennis Ritchie, one of the authors of UNIX.

• It was officially published in the 1978 book The C Programming Language by
Brian Kernighan and Dennis Ritchie, commonly called “K&R C”.

Here's the “hello, world” program in K&R C:

main() {
printf("hello, world");

}

The C programming language was used to implement most of UNIX's kernel and
userspace.

7

Problems with K&R C

Early C had some issues:

• The compiler just translated C into assembly language. This assembly then
needed to be “assembled” into machine language.

• If you didn't tell the compiler what data type a variable was, it just assumed it
was an integer.

• It had nomemory protection or error detection, so evenminor bugs would
cause your program to crash.

• Some OS-specific functions, like printf, had to come from somewhere. This
meant the machine code had to be “linked” to a C “standard library” which came
with the OS.

8

Problems with K&R C

Early C had some issues:

• The compiler just translated C into assembly language. This assembly then
needed to be “assembled” into machine language.

• If you didn't tell the compiler what data type a variable was, it just assumed it
was an integer.

• It had nomemory protection or error detection, so evenminor bugs would
cause your program to crash.

• Some OS-specific functions, like printf, had to come from somewhere. This
meant the machine code had to be “linked” to a C “standard library” which came
with the OS.

8

Problems with K&R C

Early C had some issues:

• The compiler just translated C into assembly language. This assembly then
needed to be “assembled” into machine language.

• If you didn't tell the compiler what data type a variable was, it just assumed it
was an integer.

• It had nomemory protection or error detection, so evenminor bugs would
cause your program to crash.

• Some OS-specific functions, like printf, had to come from somewhere. This
meant the machine code had to be “linked” to a C “standard library” which came
with the OS.

8

Problems with K&R C

Early C had some issues:

• The compiler just translated C into assembly language. This assembly then
needed to be “assembled” into machine language.

• If you didn't tell the compiler what data type a variable was, it just assumed it
was an integer.

• It had nomemory protection or error detection, so evenminor bugs would
cause your program to crash.

• Some OS-specific functions, like printf, had to come from somewhere. This
meant the machine code had to be “linked” to a C “standard library” which came
with the OS.

8

Modern C

• Nowwe havemodern versions of C, like C99, C11, and C23!

• These versions fix… none of the problems I mentioned.

• The C way of doing things is now just considered the “correct” way of doing
things, so we're stuck with it.

Here's the “hello, world” program, rewritten in modern C:

#include <stdio.h>
int main(int argc, char **argv) {
printf("hello, world\n");

}

9

Modern C

• Nowwe havemodern versions of C, like C99, C11, and C23!

• These versions fix… none of the problems I mentioned.

• The C way of doing things is now just considered the “correct” way of doing
things, so we're stuck with it.

Here's the “hello, world” program, rewritten in modern C:

#include <stdio.h>
int main(int argc, char **argv) {
printf("hello, world\n");

}

9

Modern C

• Nowwe havemodern versions of C, like C99, C11, and C23!

• These versions fix… none of the problems I mentioned.

• The C way of doing things is now just considered the “correct” way of doing
things, so we're stuck with it.

Here's the “hello, world” program, rewritten in modern C:

#include <stdio.h>
int main(int argc, char **argv) {
printf("hello, world\n");

}

9

Modern C

• Nowwe havemodern versions of C, like C99, C11, and C23!

• These versions fix… none of the problems I mentioned.

• The C way of doing things is now just considered the “correct” way of doing
things, so we're stuck with it.

Here's the “hello, world” program, rewritten in modern C:

#include <stdio.h>
int main(int argc, char **argv) {

printf("hello, world\n");
}

9

Outline

1. The C Language

2. Compilation

3. Package Management

4. Python

10

How source code becomes machine code

Themodern C-style process of compilation can be broken into three steps:

1. A compiler turns C code into assembly code (cc).

2. An assembler turns assembly code into machine code (as).

3. A linker takes many different pieces ofmachine code (often from different
source code files) and weaves them into a single program (ld).

Modern C compilers let you do all of these steps with a single command, but they
still do each step separately behind the scenes.

11

How source code becomes machine code

Themodern C-style process of compilation can be broken into three steps:

1. A compiler turns C code into assembly code (cc).

2. An assembler turns assembly code into machine code (as).

3. A linker takes many different pieces ofmachine code (often from different
source code files) and weaves them into a single program (ld).

Modern C compilers let you do all of these steps with a single command, but they
still do each step separately behind the scenes.

11

Compiler Input

A compiler reads source code, like this:

#include <stdio.h>
int main(int argc, char **argv) {

printf("hello, world\n");
}

This is meant to be human-readable and portable. The same code would work on
Linux on an Intel CPU or macOS on an ARM CPU.

We can compile this by running cc -S hello.c -o hello.s to get an assembly
file called hello.s.

12

Compiler Output

A compiler writes assembly code, like this:

.file "hello.c"

.text

.section .rodata
.LC0:

.string "hello, world"

.text

.globl main

.type main, @function
main:
.LFB0:

.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6

subq $16, %rsp
movl %edi, -4(%rbp)
movq %rsi, -16(%rbp)
leaq .LC0(%rip), %rax
movq %rax, %rdi
call puts@PLT
movl $0, %eax
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc

.LFE0:
.size main, .-main
.ident "GCC: (GNU) 12.2.1 20230111"
.section .note.GNU-stack,"",@progbits

This is technically still considered human-readable!
13

Assembler Input

An assembler reads assembly code, like this:

.file "hello.c"

.text

.section .rodata
.LC0:

.string "hello, world"

.text

.globl main

.type main, @function
main:
.LFB0:

.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6

subq $16, %rsp
movl %edi, -4(%rbp)
movq %rsi, -16(%rbp)
leaq .LC0(%rip), %rax
movq %rax, %rdi
call puts@PLT
movl $0, %eax
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc

.LFE0:
.size main, .-main
.ident "GCC: (GNU) 12.2.1 20230111"
.section .note.GNU-stack,"",@progbits

We can assemble this by running as -c hello.s -o hello.o to get an object file
called “hello.o”.

14

Assembler Output

An assembler writes machine code, which is not human-readable, but the
disassembly looks like this:
Disassembly of section .text:

0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 48 83 ec 10 sub $0x10,%rsp
8: 89 7d fc mov %edi,-0x4(%rbp)
b: 48 89 75 f0 mov %rsi,-0x10(%rbp)
f: 48 8d 05 00 00 00 00 lea 0x0(%rip),%rax # 16 <main+0x16>

16: 48 89 c7 mov %rax,%rdi
19: e8 00 00 00 00 call 1e <main+0x1e>
1e: b8 00 00 00 00 mov $0x0,%eax
23: c9 leave
24: c3 ret

The call to printf is missing because the assembler doesn't know where it is! This
incomplete machine code is called an object file.

15

Linker Input

An linker reads incomplete machine code in object files:
Disassembly of section .text:

0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 48 83 ec 10 sub $0x10,%rsp
8: 89 7d fc mov %edi,-0x4(%rbp)
b: 48 89 75 f0 mov %rsi,-0x10(%rbp)
f: 48 8d 05 00 00 00 00 lea 0x0(%rip),%rax # 16 <main+0x16>

16: 48 89 c7 mov %rax,%rdi
19: e8 00 00 00 00 call 1e <main+0x1e>
1e: b8 00 00 00 00 mov $0x0,%eax
23: c9 leave
24: c3 ret

We could theoretically link this using ld to get an executable, but the exact
command is complicated and system-dependent. Instead, we'll ask cc to do it:

cc hello.o -o hello 16

Linker Output

A linker writes complete machine code as an executable binary; once again, let's
look at the disassembly:
0000000000001139 <main>:

1139: 55 push %rbp
113a: 48 89 e5 mov %rsp,%rbp
113d: 48 83 ec 10 sub $0x10,%rsp
1141: 89 7d fc mov %edi,-0x4(%rbp)
1144: 48 89 75 f0 mov %rsi,-0x10(%rbp)
1148: 48 8d 05 b5 0e 00 00 lea 0xeb5(%rip),%rax # 2004 <_IO_stdin_used+0x4>
114f: 48 89 c7 mov %rax,%rdi
1152: e8 d9 fe ff ff call 1030 <puts@plt>
1157: b8 00 00 00 00 mov $0x0,%eax
115c: c9 leave
115d: c3 ret

Now the call to printf is fixed (actually called puts because of a compiler
optimization). This is because the program is now “linked” to the system C library,
libc, which has a definition of printf/puts.

17

Shared Object Files

• We can compile C into a shared object, which is a library any program can use.

• On Linux, these files end with .so; on macOS, they sometimes end with .dylib
instead. TheWindows equivalent ends with .dll.

• cc -shared test.c -o test.so creates a shared object file containing all
the functions from test.c.

• These “shared objects” are linked at runtime by a dynamic linker, which is part
of the OS.
• These so files are usually in /usr/lib/

• The environment variable $LD_LIBRARY_PATH can addmore locations.

• The ldd command tells you which shared libraries a program requires to run; if
they're not installed, the programwill give an error and exit.

18

Shared Object Files

• We can compile C into a shared object, which is a library any program can use.

• On Linux, these files end with .so; on macOS, they sometimes end with .dylib
instead. TheWindows equivalent ends with .dll.

• cc -shared test.c -o test.so creates a shared object file containing all
the functions from test.c.

• These “shared objects” are linked at runtime by a dynamic linker, which is part
of the OS.
• These so files are usually in /usr/lib/

• The environment variable $LD_LIBRARY_PATH can addmore locations.

• The ldd command tells you which shared libraries a program requires to run; if
they're not installed, the programwill give an error and exit.

18

Shared Object Files

• We can compile C into a shared object, which is a library any program can use.

• On Linux, these files end with .so; on macOS, they sometimes end with .dylib
instead. TheWindows equivalent ends with .dll.

• cc -shared test.c -o test.so creates a shared object file containing all
the functions from test.c.

• These “shared objects” are linked at runtime by a dynamic linker, which is part
of the OS.

• These so files are usually in /usr/lib/

• The environment variable $LD_LIBRARY_PATH can addmore locations.

• The ldd command tells you which shared libraries a program requires to run; if
they're not installed, the programwill give an error and exit.

18

Shared Object Files

• We can compile C into a shared object, which is a library any program can use.

• On Linux, these files end with .so; on macOS, they sometimes end with .dylib
instead. TheWindows equivalent ends with .dll.

• cc -shared test.c -o test.so creates a shared object file containing all
the functions from test.c.

• These “shared objects” are linked at runtime by a dynamic linker, which is part
of the OS.
• These so files are usually in /usr/lib/

• The environment variable $LD_LIBRARY_PATH can addmore locations.

• The ldd command tells you which shared libraries a program requires to run; if
they're not installed, the programwill give an error and exit.

18

Shared Object Files

• We can compile C into a shared object, which is a library any program can use.

• On Linux, these files end with .so; on macOS, they sometimes end with .dylib
instead. TheWindows equivalent ends with .dll.

• cc -shared test.c -o test.so creates a shared object file containing all
the functions from test.c.

• These “shared objects” are linked at runtime by a dynamic linker, which is part
of the OS.
• These so files are usually in /usr/lib/

• The environment variable $LD_LIBRARY_PATH can addmore locations.

• The ldd command tells you which shared libraries a program requires to run; if
they're not installed, the programwill give an error and exit.

18

So why does anyone use C?

C code is buggy, hacky, and hard to understand. So why is it so popular?

• It's fast: C translates really well into assembly, so C programs are orders of
magnitude faster than programs written in some other languages.

• It's omnipresent: everyone else uses C for everything, so the only way to
interact with their code is using C.

• It's required: UNIX is defined in terms of C. A UNIX-based OSmust have a C
compiler. All the interfaces to ask the OS for anything are designed for C
programs.

19

So why does anyone use C?

C code is buggy, hacky, and hard to understand. So why is it so popular?

• It's fast: C translates really well into assembly, so C programs are orders of
magnitude faster than programs written in some other languages.

• It's omnipresent: everyone else uses C for everything, so the only way to
interact with their code is using C.

• It's required: UNIX is defined in terms of C. A UNIX-based OSmust have a C
compiler. All the interfaces to ask the OS for anything are designed for C
programs.

19

So why does anyone use C?

C code is buggy, hacky, and hard to understand. So why is it so popular?

• It's fast: C translates really well into assembly, so C programs are orders of
magnitude faster than programs written in some other languages.

• It's omnipresent: everyone else uses C for everything, so the only way to
interact with their code is using C.

• It's required: UNIX is defined in terms of C. A UNIX-based OSmust have a C
compiler. All the interfaces to ask the OS for anything are designed for C
programs.

19

So why does anyone use C?

C code is buggy, hacky, and hard to understand. So why is it so popular?

• It's fast: C translates really well into assembly, so C programs are orders of
magnitude faster than programs written in some other languages.

• It's omnipresent: everyone else uses C for everything, so the only way to
interact with their code is using C.

• It's required: UNIX is defined in terms of C. A UNIX-based OSmust have a C
compiler. All the interfaces to ask the OS for anything are designed for C
programs.

19

Outline

1. The C Language

2. Compilation

3. Package Management

4. Python

20

Package Managers

• We get basic functions like printf and file I/O from libc, which comes with the
OS.

• How do we get more complicated functions? (besides writing them ourselves)

• C is so tightly integrated into the OS that we install C libraries the same way we
install programs: a packagemanager.

• On Linux, this comes with the OS: apt, dnf, rpm, pacman, etc.
• If you've ever heard of a Linux “distribution”, like Ubuntu, Debian, or Fedora, that basically
means what packagemanager it uses.

• OnmacOS, this is something we have to install, like brew.

21

Package Managers

• We get basic functions like printf and file I/O from libc, which comes with the
OS.

• How do we get more complicated functions? (besides writing them ourselves)

• C is so tightly integrated into the OS that we install C libraries the same way we
install programs: a packagemanager.

• On Linux, this comes with the OS: apt, dnf, rpm, pacman, etc.
• If you've ever heard of a Linux “distribution”, like Ubuntu, Debian, or Fedora, that basically
means what packagemanager it uses.

• OnmacOS, this is something we have to install, like brew.

21

Package Managers

• We get basic functions like printf and file I/O from libc, which comes with the
OS.

• How do we get more complicated functions? (besides writing them ourselves)

• C is so tightly integrated into the OS that we install C libraries the same way we
install programs: a packagemanager.

• On Linux, this comes with the OS: apt, dnf, rpm, pacman, etc.

• If you've ever heard of a Linux “distribution”, like Ubuntu, Debian, or Fedora, that basically
means what packagemanager it uses.

• OnmacOS, this is something we have to install, like brew.

21

Package Managers

• We get basic functions like printf and file I/O from libc, which comes with the
OS.

• How do we get more complicated functions? (besides writing them ourselves)

• C is so tightly integrated into the OS that we install C libraries the same way we
install programs: a packagemanager.

• On Linux, this comes with the OS: apt, dnf, rpm, pacman, etc.
• If you've ever heard of a Linux “distribution”, like Ubuntu, Debian, or Fedora, that basically
means what packagemanager it uses.

• OnmacOS, this is something we have to install, like brew.

21

Package Managers

• We get basic functions like printf and file I/O from libc, which comes with the
OS.

• How do we get more complicated functions? (besides writing them ourselves)

• C is so tightly integrated into the OS that we install C libraries the same way we
install programs: a packagemanager.

• On Linux, this comes with the OS: apt, dnf, rpm, pacman, etc.
• If you've ever heard of a Linux “distribution”, like Ubuntu, Debian, or Fedora, that basically
means what packagemanager it uses.

• OnmacOS, this is something we have to install, like brew.

21

Dependency Management

• When you install a program, it may depend on other programs or libraries.

• For example, firefox depends on ffmpeg.

• Those programs/libraries may themselves depend on other programs/libraries.

• Trying to figure out the entire dependency tree is somewhere between
annoying and impossible, depending on the piece of software.

Without a dependency manager of some sort, you get annoying errors like this:

22

Dependency Management

• When you install a program, it may depend on other programs or libraries.
• For example, firefox depends on ffmpeg.

• Those programs/libraries may themselves depend on other programs/libraries.

• Trying to figure out the entire dependency tree is somewhere between
annoying and impossible, depending on the piece of software.

Without a dependency manager of some sort, you get annoying errors like this:

22

Dependency Management

• When you install a program, it may depend on other programs or libraries.
• For example, firefox depends on ffmpeg.

• Those programs/libraries may themselves depend on other programs/libraries.

• Trying to figure out the entire dependency tree is somewhere between
annoying and impossible, depending on the piece of software.

Without a dependency manager of some sort, you get annoying errors like this:

22

Dependency Management

• When you install a program, it may depend on other programs or libraries.
• For example, firefox depends on ffmpeg.

• Those programs/libraries may themselves depend on other programs/libraries.

• Trying to figure out the entire dependency tree is somewhere between
annoying and impossible, depending on the piece of software.

Without a dependency manager of some sort, you get annoying errors like this:

22

Dependency Management

• When you install a program, it may depend on other programs or libraries.
• For example, firefox depends on ffmpeg.

• Those programs/libraries may themselves depend on other programs/libraries.

• Trying to figure out the entire dependency tree is somewhere between
annoying and impossible, depending on the piece of software.

Without a dependency manager of some sort, you get annoying errors like this:

22

Solutions

One solution is static linking.

• This means every dependency of a programmust be compiled into that
program's binary file.

• This is common nowadays; the iOS and Android app stores (more or less) use
this.

Another solution is packaging programs.

• This means every program comes with a list of dependencies which are
automatically downloaded/installed alongside it.

• This is more widespread; UNIX uses it by default, as do programming
language-specific tools like pip.

23

Package Managers

• A package manager is a tool which installs programs or libraries, and
automatically takes care of resolving dependencies.

• Packagemanagers may be global, like apt or brew, where any program on the
same computer can later use a dependency.

• Global packagemanagers have the downside that they may have version
conflicts; different programsmay need different versions of shared libraries.

• Packagemanagers can also be local like npm, where they install dependencies
into a specific “project”.

• Local packagemanagers have the downside that they may do redundant work;
different programsmay get duplicate copies of the same library.

24

Package Managers

• A package manager is a tool which installs programs or libraries, and
automatically takes care of resolving dependencies.

• Packagemanagers may be global, like apt or brew, where any program on the
same computer can later use a dependency.

• Global packagemanagers have the downside that they may have version
conflicts; different programsmay need different versions of shared libraries.

• Packagemanagers can also be local like npm, where they install dependencies
into a specific “project”.

• Local packagemanagers have the downside that they may do redundant work;
different programsmay get duplicate copies of the same library.

24

Package Managers

• A package manager is a tool which installs programs or libraries, and
automatically takes care of resolving dependencies.

• Packagemanagers may be global, like apt or brew, where any program on the
same computer can later use a dependency.

• Global packagemanagers have the downside that they may have version
conflicts; different programsmay need different versions of shared libraries.

• Packagemanagers can also be local like npm, where they install dependencies
into a specific “project”.

• Local packagemanagers have the downside that they may do redundant work;
different programsmay get duplicate copies of the same library.

24

Package Managers

• A package manager is a tool which installs programs or libraries, and
automatically takes care of resolving dependencies.

• Packagemanagers may be global, like apt or brew, where any program on the
same computer can later use a dependency.

• Global packagemanagers have the downside that they may have version
conflicts; different programsmay need different versions of shared libraries.

• Packagemanagers can also be local like npm, where they install dependencies
into a specific “project”.

• Local packagemanagers have the downside that they may do redundant work;
different programsmay get duplicate copies of the same library.

24

Package Managers

• A package manager is a tool which installs programs or libraries, and
automatically takes care of resolving dependencies.

• Packagemanagers may be global, like apt or brew, where any program on the
same computer can later use a dependency.

• Global packagemanagers have the downside that they may have version
conflicts; different programsmay need different versions of shared libraries.

• Packagemanagers can also be local like npm, where they install dependencies
into a specific “project”.

• Local packagemanagers have the downside that they may do redundant work;
different programsmay get duplicate copies of the same library.

24

Outline

1. The C Language

2. Compilation

3. Package Management

4. Python

25

Python

• Python is a “new”1 programming language which has taken over a lot of the
traditional roles of C within UNIX.

• Python is a scripting language like bash; typically a programmer writes short
scripts which combine tools written by someone else.

• Python is interpreted; there's no compilation step needed, but you can't run a
.py file on a computer that doesn't have python installed.

• Python is compatible with C.

1The 90s is “new” as far as UNIX goes.

26

Python

• Python is a “new”1 programming language which has taken over a lot of the
traditional roles of C within UNIX.

• Python is a scripting language like bash; typically a programmer writes short
scripts which combine tools written by someone else.

• Python is interpreted; there's no compilation step needed, but you can't run a
.py file on a computer that doesn't have python installed.

• Python is compatible with C.

1The 90s is “new” as far as UNIX goes.

26

Python

• Python is a “new”1 programming language which has taken over a lot of the
traditional roles of C within UNIX.

• Python is a scripting language like bash; typically a programmer writes short
scripts which combine tools written by someone else.

• Python is interpreted; there's no compilation step needed, but you can't run a
.py file on a computer that doesn't have python installed.

• Python is compatible with C.

1The 90s is “new” as far as UNIX goes.

26

Python

• Python is a “new”1 programming language which has taken over a lot of the
traditional roles of C within UNIX.

• Python is a scripting language like bash; typically a programmer writes short
scripts which combine tools written by someone else.

• Python is interpreted; there's no compilation step needed, but you can't run a
.py file on a computer that doesn't have python installed.

• Python is compatible with C.

1The 90s is “new” as far as UNIX goes.

26

Python Hello World

Python looks a lot more friendly than C:

#!/usr/bin/env python3
print("Hello, World!")

• Note the shebang line, like a shell script, but calling python3 instead of bash.

• There are two incompatible versions of Python; python is usually Python 2, but
python3 is Python 3. Use python3 for anything new you write.

27

Python Hello World

Python looks a lot more friendly than C:

#!/usr/bin/env python3
print("Hello, World!")

• Note the shebang line, like a shell script, but calling python3 instead of bash.

• There are two incompatible versions of Python; python is usually Python 2, but
python3 is Python 3. Use python3 for anything new you write.

27

Creating a new Python Project

• If you're writing a little standalone script, you can just create a Python file like
you'd create a shell script. Remember the shebang line!

• If you're writing a more complicated program, you probably want to create a
new project.

• As far as Python knows, a project is just a directory, so we can create a new
Python project with mkdir.

28

Creating a new Python Project

• If you're writing a little standalone script, you can just create a Python file like
you'd create a shell script. Remember the shebang line!

• If you're writing a more complicated program, you probably want to create a
new project.

• As far as Python knows, a project is just a directory, so we can create a new
Python project with mkdir.

28

Creating a new Python Project

• If you're writing a little standalone script, you can just create a Python file like
you'd create a shell script. Remember the shebang line!

• If you're writing a more complicated program, you probably want to create a
new project.

• As far as Python knows, a project is just a directory, so we can create a new
Python project with mkdir.

28

Dependencies

• Much like C programs, we sometimes want our Python program to depend on
code someone else wrote.

• We can install programs with the Python packagemanager, pip (or more
accurately, pip3).

• However, we generally don't want to copy the C approach of installing libraries
globally, since then we could only have one version of a library installed for all
our Python scripts.

• Instead, we create a virtual environment and install our required
dependencies in there.

29

Dependencies

• Much like C programs, we sometimes want our Python program to depend on
code someone else wrote.

• We can install programs with the Python packagemanager, pip (or more
accurately, pip3).

• However, we generally don't want to copy the C approach of installing libraries
globally, since then we could only have one version of a library installed for all
our Python scripts.

• Instead, we create a virtual environment and install our required
dependencies in there.

29

Dependencies

• Much like C programs, we sometimes want our Python program to depend on
code someone else wrote.

• We can install programs with the Python packagemanager, pip (or more
accurately, pip3).

• However, we generally don't want to copy the C approach of installing libraries
globally, since then we could only have one version of a library installed for all
our Python scripts.

• Instead, we create a virtual environment and install our required
dependencies in there.

29

Dependencies

• Much like C programs, we sometimes want our Python program to depend on
code someone else wrote.

• We can install programs with the Python packagemanager, pip (or more
accurately, pip3).

• However, we generally don't want to copy the C approach of installing libraries
globally, since then we could only have one version of a library installed for all
our Python scripts.

• Instead, we create a virtual environment and install our required
dependencies in there.

29

Virtual Environments

• A virtual environment is like a little bubble isolated from other Python
programs on your computer.

• Anything you install within a virtual environment will stay inside it.

• We can create a virtual environment named “myenv” in the current directory by
running the command python -m venv myenv.

• We can activate the virtual environment by running the command source
./myenv/bin/activate.

• We could deactivate the environment by running deactivate.

Let's practice this! First, create a directory named python-test; then create and
activate an environment named myenv inside it!

30

Virtual Environments

• A virtual environment is like a little bubble isolated from other Python
programs on your computer.

• Anything you install within a virtual environment will stay inside it.

• We can create a virtual environment named “myenv” in the current directory by
running the command python -m venv myenv.

• We can activate the virtual environment by running the command source
./myenv/bin/activate.

• We could deactivate the environment by running deactivate.

Let's practice this! First, create a directory named python-test; then create and
activate an environment named myenv inside it!

30

Virtual Environments

• A virtual environment is like a little bubble isolated from other Python
programs on your computer.

• Anything you install within a virtual environment will stay inside it.

• We can create a virtual environment named “myenv” in the current directory by
running the command python -m venv myenv.

• We can activate the virtual environment by running the command source
./myenv/bin/activate.

• We could deactivate the environment by running deactivate.

Let's practice this! First, create a directory named python-test; then create and
activate an environment named myenv inside it!

30

Virtual Environments

• A virtual environment is like a little bubble isolated from other Python
programs on your computer.

• Anything you install within a virtual environment will stay inside it.

• We can create a virtual environment named “myenv” in the current directory by
running the command python -m venv myenv.

• We can activate the virtual environment by running the command source
./myenv/bin/activate.

• We could deactivate the environment by running deactivate.

Let's practice this! First, create a directory named python-test; then create and
activate an environment named myenv inside it!

30

Virtual Environments

• A virtual environment is like a little bubble isolated from other Python
programs on your computer.

• Anything you install within a virtual environment will stay inside it.

• We can create a virtual environment named “myenv” in the current directory by
running the command python -m venv myenv.

• We can activate the virtual environment by running the command source
./myenv/bin/activate.

• We could deactivate the environment by running deactivate.

Let's practice this! First, create a directory named python-test; then create and
activate an environment named myenv inside it!

30

Virtual Environments

• A virtual environment is like a little bubble isolated from other Python
programs on your computer.

• Anything you install within a virtual environment will stay inside it.

• We can create a virtual environment named “myenv” in the current directory by
running the command python -m venv myenv.

• We can activate the virtual environment by running the command source
./myenv/bin/activate.

• We could deactivate the environment by running deactivate.

Let's practice this! First, create a directory named python-test; then create and
activate an environment named myenv inside it!

30

Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31

Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31

Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31

Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31

Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31

Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31

Python Scripting

Let's write a Python script.

In fact, let's translate a shell script we wrote in Lecture 4—my_folder.sh—into
Python!

Create a new file called my_folder.py and open it in your favorite editor.

32

Python Scripting: Example

akshay@akshays-thinkpad ~ % python my_folder.py akshay akshay.txt

#!/usr/bin/env python3
import os
import sys

def make_my_folder(folder_name, file_name):
os.mkdir(folder_name)
os.chdir(folder_name)
with open(file_name, 'a'):

pass

make_my_folder(sys.argv[1], sys.argv[2]) 33

Python Scripting: Example 2

Let's write a Python script that uses a dependency, vector_norm.py.

akshay@akshays-thinkpad ~ % python vector_norm.py 1 2 3

#!/usr/bin/env python3
import numpy as np
import sys

vector = np.array(sys.argv[1:])
print(np.linalg.norm(vector))

34

Packaging a Virtual Environment

The virtual environment you created is customized to your computer, so what do we
do if we want to send a Python project to someone else?

1. Create a requirements.txt file by running pip3 freeze >
requirements.txt.

2. Send your Python files (*.py) and requirements.txt to someone else.

3. Have the other person create a virtual environment and run pip3 install -r
requirements.txt inside it to install all the requirements.

35

Packaging a Virtual Environment

The virtual environment you created is customized to your computer, so what do we
do if we want to send a Python project to someone else?

1. Create a requirements.txt file by running pip3 freeze >
requirements.txt.

2. Send your Python files (*.py) and requirements.txt to someone else.

3. Have the other person create a virtual environment and run pip3 install -r
requirements.txt inside it to install all the requirements.

35

Packaging a Virtual Environment

The virtual environment you created is customized to your computer, so what do we
do if we want to send a Python project to someone else?

1. Create a requirements.txt file by running pip3 freeze >
requirements.txt.

2. Send your Python files (*.py) and requirements.txt to someone else.

3. Have the other person create a virtual environment and run pip3 install -r
requirements.txt inside it to install all the requirements.

35

Packaging a Virtual Environment

The virtual environment you created is customized to your computer, so what do we
do if we want to send a Python project to someone else?

1. Create a requirements.txt file by running pip3 freeze >
requirements.txt.

2. Send your Python files (*.py) and requirements.txt to someone else.

3. Have the other person create a virtual environment and run pip3 install -r
requirements.txt inside it to install all the requirements.

35

What's so great about Python?

Source: xkcd 353
36

https://xkcd.com/353/

What's so great about Python?

Python is fundamentally based on C, but hides it under really good abstractions.

If you really need to use C from inside Python, you can! But most of the time you
never need to.

Python scripts can link against C shared object files. The entire C software
ecosystem is usable from inside Python.

37

What's so great about Python?

Python is fundamentally based on C, but hides it under really good abstractions.

If you really need to use C from inside Python, you can! But most of the time you
never need to.

Python scripts can link against C shared object files. The entire C software
ecosystem is usable from inside Python.

37

What's so great about Python?

Python is fundamentally based on C, but hides it under really good abstractions.

If you really need to use C from inside Python, you can! But most of the time you
never need to.

Python scripts can link against C shared object files. The entire C software
ecosystem is usable from inside Python.

37

Python-C Foreign Function Interface

Say we have a C file add.c:

int add(int a, int b) { return a + b; }

We can compile it into add.so:

cc -shared add.c -o add.so

We can use it from Python:

import ctypes
lib = ctypes.CDLL("./add.so")
print(lib.add(1, 2))

38

Python-C Foreign Function Interface

Say we have a C file add.c:

int add(int a, int b) { return a + b; }

We can compile it into add.so:

cc -shared add.c -o add.so

We can use it from Python:

import ctypes
lib = ctypes.CDLL("./add.so")
print(lib.add(1, 2))

38

Python-C Foreign Function Interface

Say we have a C file add.c:

int add(int a, int b) { return a + b; }

We can compile it into add.so:

cc -shared add.c -o add.so

We can use it from Python:

import ctypes
lib = ctypes.CDLL("./add.so")
print(lib.add(1, 2))

38

	The C Language
	Compilation
	Package Management
	Python

