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Learning Goals

In this lecture, we will see:

• How UNIX and C were designed together

• How C compilers work

• How packagemanagers work

• How Python has taken over UNIX scripting
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C

• C is a general-purpose programming language from the 1970s.

• C is used everywhere, and has inspired:
• Every major operating system

• Every mainstream programming language

• Even if you never write C, you indirectly use it every day.
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Before C

• Nowadays, C is considered a weird, old (and sometimes scary!) language.

• The languages before C were even worse.

This is the “hello, world!” program in B (the language before C):

main( ) {
extern a, b, c;
putchar(a); putchar(b); putchar(c); putchar('!*n');

}

a 'hell';
b 'o, w';
c 'orld';
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Early C

• C was designed in the 1970s by Dennis Ritchie, one of the authors of UNIX.

• It was officially published in the 1978 book The C Programming Language by
Brian Kernighan and Dennis Ritchie, commonly called “K&R C”.

Here's the “hello, world” program in K&R C:

main( ) {
printf("hello, world");

}

The C programming language was used to implement most of UNIX's kernel and
userspace.
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Problems with K&R C

Early C had some issues:

• The compiler just translated C into assembly language. This assembly then
needed to be “assembled” into machine language.

• If you didn't tell the compiler what data type a variable was, it just assumed it
was an integer.

• It had nomemory protection or error detection, so evenminor bugs would
cause your program to crash.

• Some OS-specific functions, like printf, had to come from somewhere. This
meant the machine code had to be “linked” to a C “standard library” which came
with the OS.
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Modern C

• Nowwe havemodern versions of C, like C99, C11, and C23!

• These versions fix… none of the problems I mentioned.

• The C way of doing things is now just considered the “correct” way of doing
things, so we're stuck with it.

Here's the “hello, world” program, rewritten in modern C:

#include <stdio.h>
int main(int argc, char **argv) {
printf("hello, world\n");

}
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How source code becomes machine code

Themodern C-style process of compilation can be broken into three steps:

1. A compiler turns C code into assembly code (cc).

2. An assembler turns assembly code into machine code (as).

3. A linker takes many different pieces ofmachine code (often from different
source code files) and weaves them into a single program (ld).

Modern C compilers let you do all of these steps with a single command, but they
still do each step separately behind the scenes.
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Compiler Input

A compiler reads source code, like this:

#include <stdio.h>
int main(int argc, char **argv) {

printf("hello, world\n");
}

This is meant to be human-readable and portable. The same code would work on
Linux on an Intel CPU or macOS on an ARM CPU.

We can compile this by running cc -S hello.c -o hello.s to get an assembly
file called hello.s.
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Compiler Output

A compiler writes assembly code, like this:

.file "hello.c"

.text

.section .rodata
.LC0:

.string "hello, world"

.text

.globl main

.type main, @function
main:
.LFB0:

.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6

subq $16, %rsp
movl %edi, -4(%rbp)
movq %rsi, -16(%rbp)
leaq .LC0(%rip), %rax
movq %rax, %rdi
call puts@PLT
movl $0, %eax
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc

.LFE0:
.size main, .-main
.ident "GCC: (GNU) 12.2.1 20230111"
.section .note.GNU-stack,"",@progbits

This is technically still considered human-readable!
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Assembler Input

An assembler reads assembly code, like this:

.file "hello.c"

.text

.section .rodata
.LC0:

.string "hello, world"

.text

.globl main

.type main, @function
main:
.LFB0:

.cfi_startproc
pushq %rbp
.cfi_def_cfa_offset 16
.cfi_offset 6, -16
movq %rsp, %rbp
.cfi_def_cfa_register 6

subq $16, %rsp
movl %edi, -4(%rbp)
movq %rsi, -16(%rbp)
leaq .LC0(%rip), %rax
movq %rax, %rdi
call puts@PLT
movl $0, %eax
leave
.cfi_def_cfa 7, 8
ret
.cfi_endproc

.LFE0:
.size main, .-main
.ident "GCC: (GNU) 12.2.1 20230111"
.section .note.GNU-stack,"",@progbits

We can assemble this by running as -c hello.s -o hello.o to get an object file
called “hello.o”.
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Assembler Output

An assembler writes machine code, which is not human-readable, but the
disassembly looks like this:
Disassembly of section .text:

0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 48 83 ec 10 sub $0x10,%rsp
8: 89 7d fc mov %edi,-0x4(%rbp)
b: 48 89 75 f0 mov %rsi,-0x10(%rbp)
f: 48 8d 05 00 00 00 00 lea 0x0(%rip),%rax # 16 <main+0x16>

16: 48 89 c7 mov %rax,%rdi
19: e8 00 00 00 00 call 1e <main+0x1e>
1e: b8 00 00 00 00 mov $0x0,%eax
23: c9 leave
24: c3 ret

The call to printf is missing because the assembler doesn't know where it is! This
incomplete machine code is called an object file.
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Linker Input

An linker reads incomplete machine code in object files:
Disassembly of section .text:

0000000000000000 <main>:
0: 55 push %rbp
1: 48 89 e5 mov %rsp,%rbp
4: 48 83 ec 10 sub $0x10,%rsp
8: 89 7d fc mov %edi,-0x4(%rbp)
b: 48 89 75 f0 mov %rsi,-0x10(%rbp)
f: 48 8d 05 00 00 00 00 lea 0x0(%rip),%rax # 16 <main+0x16>

16: 48 89 c7 mov %rax,%rdi
19: e8 00 00 00 00 call 1e <main+0x1e>
1e: b8 00 00 00 00 mov $0x0,%eax
23: c9 leave
24: c3 ret

We could theoretically link this using ld to get an executable, but the exact
command is complicated and system-dependent. Instead, we'll ask cc to do it:

cc hello.o -o hello 16



Linker Output

A linker writes complete machine code as an executable binary; once again, let's
look at the disassembly:
0000000000001139 <main>:

1139: 55 push %rbp
113a: 48 89 e5 mov %rsp,%rbp
113d: 48 83 ec 10 sub $0x10,%rsp
1141: 89 7d fc mov %edi,-0x4(%rbp)
1144: 48 89 75 f0 mov %rsi,-0x10(%rbp)
1148: 48 8d 05 b5 0e 00 00 lea 0xeb5(%rip),%rax # 2004 <_IO_stdin_used+0x4>
114f: 48 89 c7 mov %rax,%rdi
1152: e8 d9 fe ff ff call 1030 <puts@plt>
1157: b8 00 00 00 00 mov $0x0,%eax
115c: c9 leave
115d: c3 ret

Now the call to printf is fixed (actually called puts because of a compiler
optimization). This is because the program is now “linked” to the system C library,
libc, which has a definition of printf/puts.
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Shared Object Files

• We can compile C into a shared object, which is a library any program can use.

• On Linux, these files end with .so; on macOS, they sometimes end with .dylib
instead. TheWindows equivalent ends with .dll.

• cc -shared test.c -o test.so creates a shared object file containing all
the functions from test.c.

• These “shared objects” are linked at runtime by a dynamic linker, which is part
of the OS.
• These so files are usually in /usr/lib/

• The environment variable $LD_LIBRARY_PATH can addmore locations.

• The ldd command tells you which shared libraries a program requires to run; if
they're not installed, the programwill give an error and exit.
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So why does anyone use C?

C code is buggy, hacky, and hard to understand. So why is it so popular?

• It's fast: C translates really well into assembly, so C programs are orders of
magnitude faster than programs written in some other languages.

• It's omnipresent: everyone else uses C for everything, so the only way to
interact with their code is using C.

• It's required: UNIX is defined in terms of C. A UNIX-based OSmust have a C
compiler. All the interfaces to ask the OS for anything are designed for C
programs.
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Package Managers

• We get basic functions like printf and file I/O from libc, which comes with the
OS.

• How do we get more complicated functions? (besides writing them ourselves)

• C is so tightly integrated into the OS that we install C libraries the same way we
install programs: a packagemanager.

• On Linux, this comes with the OS: apt, dnf, rpm, pacman, etc.
• If you've ever heard of a Linux “distribution”, like Ubuntu, Debian, or Fedora, that basically
means what packagemanager it uses.

• OnmacOS, this is something we have to install, like brew.
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Dependency Management

• When you install a program, it may depend on other programs or libraries.

• For example, firefox depends on ffmpeg.

• Those programs/libraries may themselves depend on other programs/libraries.

• Trying to figure out the entire dependency tree is somewhere between
annoying and impossible, depending on the piece of software.

Without a dependency manager of some sort, you get annoying errors like this:
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Solutions

One solution is static linking.

• This means every dependency of a programmust be compiled into that
program's binary file.

• This is common nowadays; the iOS and Android app stores (more or less) use
this.

Another solution is packaging programs.

• This means every program comes with a list of dependencies which are
automatically downloaded/installed alongside it.

• This is more widespread; UNIX uses it by default, as do programming
language-specific tools like pip.
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Package Managers

• A package manager is a tool which installs programs or libraries, and
automatically takes care of resolving dependencies.

• Packagemanagers may be global, like apt or brew, where any program on the
same computer can later use a dependency.

• Global packagemanagers have the downside that they may have version
conflicts; different programsmay need different versions of shared libraries.

• Packagemanagers can also be local like npm, where they install dependencies
into a specific “project”.

• Local packagemanagers have the downside that they may do redundant work;
different programsmay get duplicate copies of the same library.
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Python

• Python is a “new”1 programming language which has taken over a lot of the
traditional roles of C within UNIX.

• Python is a scripting language like bash; typically a programmer writes short
scripts which combine tools written by someone else.

• Python is interpreted; there's no compilation step needed, but you can't run a
.py file on a computer that doesn't have python installed.

• Python is compatible with C.

1The 90s is “new” as far as UNIX goes.
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Python Hello World

Python looks a lot more friendly than C:

#!/usr/bin/env python3
print("Hello, World!")

• Note the shebang line, like a shell script, but calling python3 instead of bash.

• There are two incompatible versions of Python; python is usually Python 2, but
python3 is Python 3. Use python3 for anything new you write.
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Creating a new Python Project

• If you're writing a little standalone script, you can just create a Python file like
you'd create a shell script. Remember the shebang line!

• If you're writing a more complicated program, you probably want to create a
new project.

• As far as Python knows, a project is just a directory, so we can create a new
Python project with mkdir.
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Dependencies

• Much like C programs, we sometimes want our Python program to depend on
code someone else wrote.

• We can install programs with the Python packagemanager, pip (or more
accurately, pip3).

• However, we generally don't want to copy the C approach of installing libraries
globally, since then we could only have one version of a library installed for all
our Python scripts.

• Instead, we create a virtual environment and install our required
dependencies in there.
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Virtual Environments

• A virtual environment is like a little bubble isolated from other Python
programs on your computer.

• Anything you install within a virtual environment will stay inside it.

• We can create a virtual environment named “myenv” in the current directory by
running the command python -m venv myenv.

• We can activate the virtual environment by running the command source
./myenv/bin/activate.

• We could deactivate the environment by running deactivate.

Let's practice this! First, create a directory named python-test; then create and
activate an environment named myenv inside it!
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Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31



Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31



Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31



Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31



Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31



Requirements

Let's install some packages inside your new virtual environment.

• First, make sure the environment is activated.

• Now, let's install the numpy package, which lets us do vector math: pip3
install numpy.

• We can now launch a Python Read-Eval-Print-Loop (REPL) by running
python3. This lets us type Python commands and have them immediately
executed, just like the shell!

• Inside the REPL, run import numpy to import the numpy library we just installed.

• Try running numpy.array([1, 2, 3]) + numpy.array([4, 5, 6]).

31



Python Scripting

Let's write a Python script.

In fact, let's translate a shell script we wrote in Lecture 4—my_folder.sh—into
Python!

Create a new file called my_folder.py and open it in your favorite editor.

32



Python Scripting: Example

akshay@akshays-thinkpad ~ % python my_folder.py akshay akshay.txt

#!/usr/bin/env python3
import os
import sys

def make_my_folder(folder_name, file_name):
os.mkdir(folder_name)
os.chdir(folder_name)
with open(file_name, 'a'):

pass

make_my_folder(sys.argv[1], sys.argv[2]) 33



Python Scripting: Example 2

Let's write a Python script that uses a dependency, vector_norm.py.

akshay@akshays-thinkpad ~ % python vector_norm.py 1 2 3

#!/usr/bin/env python3
import numpy as np
import sys

vector = np.array(sys.argv[1:])
print(np.linalg.norm(vector))
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Packaging a Virtual Environment

The virtual environment you created is customized to your computer, so what do we
do if we want to send a Python project to someone else?

1. Create a requirements.txt file by running pip3 freeze >
requirements.txt.

2. Send your Python files (*.py) and requirements.txt to someone else.

3. Have the other person create a virtual environment and run pip3 install -r
requirements.txt inside it to install all the requirements.
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What's so great about Python?

Source: xkcd 353
36

https://xkcd.com/353/


What's so great about Python?

Python is fundamentally based on C, but hides it under really good abstractions.

If you really need to use C from inside Python, you can! But most of the time you
never need to.

Python scripts can link against C shared object files. The entire C software
ecosystem is usable from inside Python.
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Python-C Foreign Function Interface

Say we have a C file add.c:

int add(int a, int b) { return a + b; }

We can compile it into add.so:

cc -shared add.c -o add.so

We can use it from Python:

import ctypes
lib = ctypes.CDLL("./add.so")
print(lib.add(1, 2))
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